DOI QR코드

DOI QR Code

소형발사체 공통격벽 추진제 탱크의 단열재 두께 변화에 따른 과도 열전달 해석

Transient Heat Transfer Analysis of Small Launch Vehicle Common Bulkhead Propellant Tank with Different Insulation Thickness

  • 양지윤 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이경한 (한국항공대학교 항공우주 및 기계공학과) ;
  • 김상우 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이수용 (한국항공대학교 항공우주산업기술연구소)
  • Ji-Yoon Yang (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Gyeong-Han Lee (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sang-Woo Kim (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Soo-Yong Lee (Reserch Institute for Aerospace Engineering and Technology, Korea Aerospace University)
  • 투고 : 2024.03.04
  • 심사 : 2024.05.21
  • 발행 : 2024.06.30

초록

본 연구에서는 단열재 두께에 따른 소형발사체 공통격벽 추진제 탱크의 단열 성능을 분석하였다. 단일 파트로 이루어진 공통격벽 추진제 탱크는 탱크 연결부가 불필요하여 추진제 탱크의 경량화 설계가 가능하다. 그러나 산화제와 연료의 온도차로 인한 열전달에 의하여 추진제의 손실과 점화 지연 등의 문제가 발생할 수 있다. 따라서 산화제 탱크와 연료 탱크를 구분하는 공통격벽 구조의 단열 성능 확인이 필수적이다. 본 연구에서는 기화 질량(boil- off mass)을 이용한 단열 성능 분석을 위하여 단열재 두께가 50, 55, 60, 65, 70 mm인 추진제 탱크에 대해 과도 열전달 해석을 수행하였다. 이어서 추진제 탱크의 1단 비행시간 동안 발생하는 산화제의 기화 질량을 도출하였다. 그 결과, 단열재 두께가 증가할수록 기화 질량이 감소하여 단열 성능이 향상되었다.

The insulation performance of a common bulkhead propellant tank for small launch vehicles with variations in insulation thickness was analyzed. The common bulkhead propellant tank composed of a single part allows for lightweight design, as it eliminates the need for tank connections. However, problems such as propellant loss and ignition delay due to heat transfer caused by temperature differences between oxidizer and fuel may arise. Therefore, it is essential to verify the insulation performance of the common bulkhead structure that separates the oxidizer tank and fuel tank. In this study, transient heat transfer analysis was conducted for propellant tanks with insulation thicknesses of (50, 55, 60, 65, and 70) mm to analyze the insulation performance using boil-off mass. Subsequently, the boil-off mass of the oxidizer generated during the first-stage flight time of the propellant tank was determined. The results confirmed that increasing the insulation thickness reduces the boil-off mass, thereby improving the insulation performance.

키워드

과제정보

본 연구는 과학기술정보통신부의 거대과학연구개발사업인 '스페이스파이오니어사업'에 의해 수행됨(No.2021M1A3B9096764). 또한 이 연구는 2023 년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No.2022R1A6A1A03056784, No. 2022R1F1A1069025).

참고문헌

  1. J. S. Choi, H. I. Huh, and W. K. Ki, "Technology and Development Trends of Small Launch Vehicles," Journal of the Korean Society of Propulsion Engineers, vol. 24, no. 5, pp. 91-102, September 2020.
  2. Y. P. Singh, H. Singh, P. K. Sahu, and R. Muthukumar, "Common bulkhead tank design for cryogenic stage of an Indian launch vehicle," Defence Science Journal, vol. 72, no. 1, pp. 3-9, January 2022.
  3. C. M. Lee, C. H. Sim, and J. S. Park," Thermal Insulation Performance Comparison Using Boil-Off Mass and Boil- Off Rate for Common Bulkhead Structures of Space Launch Vehicles," Journal of The Korean Society for Aeronautical and Space Sciences, vol.51, no. 4, pp. 227-234, April 2023.
  4. F. Barato, "Challenges of Ablatively Cooled Hybrid Rockets for Satellites or Upper Stages," Aerospace, vol. 8, no. 7, pp. 190, May 2021.
  5. N. K. Cho, D. B. Seo, B. I. Yoo, S. H. Kim, and Y. M. Han, "Investigation on Chilling Procedure for LOX Supply System for Liquid Rocket Engine," Journal of the Korean Society of Propulsion Engineers, vol. 23, no. 3, pp. 119-126, May 2019.
  6. Korea Aerospace Research Institute, "Common Bulkhead Propellant Tank Development Specification," SPPO-SPLV1-001, Ver. B, 2022.
  7. B. Szelinski, H. Lange, C. Rottger, H. Sacher, S. Weiland, and D. Zell, "Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank," Acta Astronautica, vol. 81, no. 1, pp. 200-213, June 2012.
  8. Z. Q. Li, B. H. Nan, T. F. He, and G. X. Feng, "Study of bonding technology and property of foam-sandwich cobulkhead of cryogenic tank on launch vehicle," Materials Science Forum, vol. 817, pp. 639-644, May 2015.
  9. S. S umith, a nd R . R amesh K umar, "Thermo-structural analysis of cryogenic tanks with common bulkhead configuration," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 236, no. 5, pp. 900-909, June 2021.
  10. D. K. Choi, J. W. Choi, S. Y. Lee, and J. H. Roh, "A Study on Thermal-Structural Analysis of Common Bulkhead Propellant Tanks Using a Two-Dimensional Axisymmetric Numerical Model," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, pp. 83-84, November 2021.
  11. The Engineering ToolBox, https://www.engineeringtoolbox.com/
  12. NIST Chemistry WebBook, https://webbook.nist.gov/chemistry/
  13. S. M. Tak, J. W. Park, M. K. Kang, D. J. Park, J. S. Lee, and S. S. Lee, "Transient heat transfer analysis of inertial measurement devices by outside frictional heat," Journal of Aerospace System Engineering, vol. 4, no. 1, pp. 32-37, March 2010.