• Title/Summary/Keyword: 공진현상

Search Result 443, Processing Time 0.03 seconds

Introduction of Numerical Simulation Techniques for High-Frequency Combustion Instabilities (고주파 연소불안정 예측을 위한 해석기술 개발 사례)

  • Kim, Seong-Ku;Joh, Miok;Han, Sanghoon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.68-77
    • /
    • 2017
  • High-frequency combustion instability results from a feedback coupling between the unsteady heat release rate and the acoustic waves formed resonantly in the combustion chamber. It can be modeled as thermoacoustic problems with various degrees of the assumptions and simplifications. This paper presents numerical analysis of self-excited combustion instabilities in a variable-length lean-premixed combustor and designs of passive control devices such as baffle and acoustic resonators in a framework of 3-D FEM Helmholtz solver. Nonlinear behaviors such as steep-fronted shock waves and a finite amplitude limit cycle are also investigated with a compressible flow simulation technique.

  • PDF

Analysis of the Harmonic Resonance of Primary Restorative Transmission System Using PSCAD/EMTDC PART II (PSCADI/EMTDC를 이용한 시송전계통의 고조파 공진현상 분석 II)

  • Lee H. J.;Yoo W. K.;Lee K. S.;Park S. M.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.48-50
    • /
    • 2004
  • The energization of high voltage transmission lines and transformers, that is an inevitable process in most countries as the first restorative action for wide-area blackout, may induce overvoltages such as sustained overvoltage, transient overvoltage and harmonic resonant overvoltage. And these may cause damages to power system equipments or failure of surge arresters. The harmonic resonant overvoltage originates in switching operations and nonlinear characteristics of equipments. Actually it is difficult to predict the occurrence of harmonic overvoltage, since they result from nonlinear characteristics of transformers and other equipments. This paper describes the analysis of domestic primary restorative transmission system using PSCAD/EMTDC. The harmonic resonance is verified and the solution to prevent harmonic resonance is proposed in this paper. As a result, the PSCAD/EMTBC simulation showed slightly conflictive results that had been presented by IEEE Power System Restoration Working Group report.

  • PDF

A Study on Damping Characteristic under the Thermo-acoustic Condition using the Rijke Tube (Rijke Tube를 이용한 열환경에서의 음향공 감쇠 특성연구)

  • Kim, Geun-Cheol;Jeon, Jun-Soo;Kim, Joong-Il;Ko, Young-Sung;Kim, Hong-Jip
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.47-50
    • /
    • 2011
  • A Rijke tube which has an electric heater and a flow controller was designed and thermo-acoustic instability was induced by the Rijke tube. The thermo-acoustic instability was damped by a resonator and the damping characteristics were investigated and compared to room temperature acoustic test. Results show that decay time of the thermo-acoustic condition was increased by about 40% compared to that of room temperature acoustic test.

  • PDF

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

Instantaneous Voltage Control Scheme of Auxiliary Power Supply System for Electric Railway Vehicles (철도차량 보조전원장치의 순시전압제어)

  • 김재식;최재호;임성수;이은규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.349-356
    • /
    • 1999
  • This paper presents an instantaneous voltage control scheme of au킹liary power supply system for the electric railway v vehicles, The resonance problem of the LC filter and the existing steady state error are more serious as the use of l instantaneous voltage control techniques for the fast transient response at the nonlinear load, A filter capacitor current f feedback loop is considered to increase the damping ratio of the voltage transfer function for the suppression of the resonance problem of the LC inverter output filter. To eliminate the steady state en‘or existing in case of the AC l instantaneous voltage control. the high gain transfer function is added to the conventional PI controller. The theoretical a analysis is well described with the simulation results. The validity of the proposed schemes is well verified through the s simulation and expelimental results for the 5 kVA prototype.

  • PDF

Vortex sheddings and Pressure Oscillations in Hybrid Rocket Combustion (하이브리드로켓 연소실의 와류발생과 연소압력 진동)

  • Park, Kyungsoo;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • The similarity in internal flow of solid and hybrid rocket suggests that hybrid rocket combustion can be susceptible to instability due to vortex sheddings and their interaction. This study focuses on the evolution of interaction of vortex generated in pre-chamber with other types of vortex in the combustor and the change of combustion characteristics. Baseline and other results tested with disks show that there are five different frequency bands appeared in spectral domain. These include a frequency with thermal lag of solid fuel, vortex shedding due to obstacles such as forward, backward facing step and wall vortices near surface. The comparison of frequency behavior in the cases with disk 1 and 3 reveals that vortex shedding generated in pre-chamber can interact with other types of vortex shedding at a certain condition. The frequency of Helmholtz mode is one of candidates resulting to a resonance when it was excited by other types of oscillation even if this mode was not discernable in baseline test. This selective mechanism of resonance may explain the reason why non-linear combustion instability occurs in hybrid rocket combustion.

A new transmission-line model for multi-layered PZT ultrasonic transducer (다층 PZT 초음파 트랜스듀서에 대한 새로운 전송선로형 등가회로의 제안)

  • Kim, Moo-Joon;Ha, Kang-Lyeol;Kim, Sung-Boo;Lee, Jong-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.29-37
    • /
    • 1995
  • A resonant frequency of piezoelectric transducer depends remarkably on the electric impedance connected to the vibrator. In this paper, using this effect of frequency controllable two layered PZT ultrasonic transducer is designed and its acoustic characteristics are analyzed by a new transmission model equivalent circuit. The theoretical and the experimental results of the electric impedance effect on the resonant frequency variation were compared and both results showed a good consistency each other. The resonant frequency has been controlled continuously in the wide frequency range of 180kHz~580kHz and the effective attenuations were less than 7dB in the frequency range of 330kHz~470kHz.

  • PDF

The Research of Vibration Power Generation with Two Degree of Freedom Using Ocean Wave (파도를 이용한 2자유도 파력진동발전시스템에 대한 연구)

  • Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1028-1034
    • /
    • 2011
  • This paper have been studied that ocean wave power vibration generation system with two D.O.F.(degree of freedom) consists of buoy and vibration generation system with two D.O.F. for using efficiency of ocean wave energy. It selected main frequencies ${\omega}_1$, ${\omega}_2$ in frequency with ocean wave and it fitted them to the natural frequencies of vibration system with two D.O.F. in the vibrational power generation system. Then each the relative velocity of between the winding coil and the permanent magnet is faster than the velocity of ocean wave up and down motion by resonance phenomenon. Also the ocean wave power generation with two D.O.F. obtained the more electric energy then the ocean wave power generation with one D.O.F. by coupling effect for two D.O.F. vibration system. Therefore ocean wave power vibration generation system with two degree of freedom that is proposed in this paper has merits which not only using more energy in the ocean wave but also obtaining more electronic energy.

An Experimental and Numerical Study on the Fracture Behavior of Air conditioner Impellers (에어컨 임펠러의 파손 거동에 관한 실험 및 수치적 연구)

  • Koh, Byung-Kab;Lee, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3533-3539
    • /
    • 2009
  • An air conditioner impeller has been used to suck the warm air and to blow the chilled air by the centrifugal force induced from the rotation of it. To check the possibility of the fracture due to resonance, both numerical and experimental approach was carried out. For the structural analysis, the commercial code ANSYS based on the Finite Element Method was employed. The possibility of the fracture is the resonance between the natural frequency of impeller and characteristic frequency due to the aerodynamic forces. Experiment was carried out to see the natural frequency and numerical analysis based on the Vortex Element Method is performed to get the characteristic frequency. Comparing the natural frequencies that are calculated as described, we believe that resonance occurs.

Pressure sensor using the side polished single mode fiber and polymer planar waveguide coupler (측면연마된 단일모드 광섬유와 폴리머 평면도파로 결합기를 이용한 압력 센서)

  • Yoon, Jong-Kuk;Jung, Woong-Gyu;Kim, Sang-Woo;Kim, Eung-Soo;Lee, Seung-Ha;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.156-162
    • /
    • 2001
  • Novel pressure sensor using the resonance wavelength shift of single mode fiber-to-planar waveguide coupler, was demonstrated. It is found that the resonance wavelength shift due to refractive index variation of polymers by pressure occurs and its sensitivity depends on materials. We adopted symmetric structure of planar waveguide and remove the polarization dependence which is inevitable with side-polished fiber. AZ4562, AZl512 and THB-30 are used as planar waveguide materials and the resonance wavelength shifting by pressure was shown -0.008um/bar, 0.033nm/bar and 0.16nm/bar, respectively.

  • PDF