• Title/Summary/Keyword: 공진측정

Search Result 1,101, Processing Time 0.023 seconds

Compact 4-bit Chipless RFID Tag Using Modified ELC Resonator and Multiple Slot Resonators (변형된 ELC 공진기와 다중 슬롯 공진기를 이용한 소형 4-비트 Chipless RFID 태그 )

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.516-521
    • /
    • 2022
  • In this paper, a compact 4-bit chipless RFID(radio frequency identification) tag using a modified ELC(electric field-coupled inductive-capacitive) resonator and multiple slot resonators is proposed. The modified ELC resonator uses an interdigital-capacitor structure in the conventional ELC resonator to lower the resonance peak frequency of the RCS. The multiple slot resonators are designed by etching three slots with different lengths into an inverted U-shaped conductor. The resonant peak frequency of the RCS for the modified ELC resonator is 3.216 GHz, whereas those of the multiple slot resonators are set at 4.122 GHz, 4.64 GHz, and 5.304 GHz, respectively. The proposed compact four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. Experiment results show that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.285 GHz, 4.09 GHz, 4.63 GHz, and 5.31 GHz, respectively, which is similar to the simulation results with errors in the range between 0.78% and 2.16%.

방진고무의 진동특성 해석 및 실험 I

  • 이규섭;이상엽;유춘화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.27-32
    • /
    • 1990
  • 본고에서는 한국공업규격에서 정하고 있는 고무의 시험방법(공진법, 비공진 법)을 따라 고무의 탄성계수와 손실계수를 측정하고, 이 시험방법에서 발생 할수 있는 시험오차(시편의 질량효과, 비선형성)를 제시함으로써 이후 고무 의 동특성 시험을 위한 procedure의 제정에 도움이 되고자 한다.

  • PDF

Data Reduction and Analysis of the Resonant Column Testing Based on the Equation of Motion (운동방정식에 기초한 공진주 실험의 자료분석 및 해석)

  • 조성호;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.133-144
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and material damping factor of soils. The method has been widely used for many applications and its importance has increased. Since the first use of the testing method in 1960's, the low-technology electronic devices fir testing and data acquisition have limited the measurement only to the amplitude of the linear spectrum. The limitations of the testing method are also attributed to the assumption of linear-elastic material in the theory of the resonant column testing and also to the incomplete understanding of the dynamic behaviour of the resonant column testing device. Recently, Joh et al. proposed a theory to overcome the limitations of the resonant column testing by deriving the equation of motion and providing its solution for the resonant column testing device. This study proposed the improved data reduction and analysis method for the resonant column testing, thanks to the advanced data acquisition system and the new theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were performed fir Joomunjin sand, which verified the feasibility of the proposed method and revealed the limitations of the conventional data reduction and analysis method.

Vital Sign Sensor Based on Second Harmonic Frequency Drift of Oscillator (발진기의 2채배 고조파 주파수 천이를 이용한 생체신호 측정센서)

  • Ku, Ki-Young;Hong, Yunseog;Lee, Hee-Jo;Yun, Gi-Ho;Yook, Jong-Gwan;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a vital sign sensor based on impedance variation of resonator is proposed to detect the respiration and heartbeat signals within near-field range as a function of the separation distance between resonator and subject. The sensor consists of an oscillator with a built-in planar type patch resonator, a diplexer for only pass the second harmonic frequency, amplifier, SAW filter, and RF detector. The cardiac activity of a subject such as respiration and heartbeat causes the variation of the oscillation frequency corresponding impedance variation of the resonator within near-field range. The combination of the second harmonic oscillation frequency deviation and the superior skirt frequency of the SAW filter enables the proposed sensor to extend twice detection range. The experimental results reveal that the proposed sensor placed 40 mm away from a subject can reliably detect respiration and heartbeat signals.

Resonant Wavelength Characteristics of Arc-Induced Long-Period Fiber Gratings (아크 유도 장주기 광섬유 격자의 공진 파장 특성)

  • Chung, Chul;Lee, Ho-Joon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.48-56
    • /
    • 2002
  • A fabrication method of long--period fiber gratings (LPFGs) that can be easily controlled resonance wavelength and losses is introduced. We used the superposition method that core and cladding diameter are modulated by applying a number of small electric-arc to the normal fiber. We derived an equation of resonance wavelength change according to core diameter variation using the phase matching condition and showed the results are well matched with experiments. The measured resonant wavelengths of arc-induced superposition LPFGs according to grating period are well coincident with that of phase matching condition. The resonance wavelength is measured for the temperature changes and a slight mechanical strength degradation of arc-induced LPFGs is observed by increasing arc times.

Design and Implementation of 2.4 ㎓ and 5 ㎓ Dual Band Antenna for Access Point of Wireless LAN (무선 LAN 엑세스 포인트용 2.4 GHz, 5 GHz 이중공진 안테나의 설계 및 구현)

  • 김창일;오종대;양운근;김성민
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.304-311
    • /
    • 2003
  • In this paper, we present the 2.4 ㎓ and 5 ㎓ dual band antenna fur access point of WLAN(Wireless Local Area Network). The proposed antenna must have equal gains in both frequency bands to accept two services. We proposed using collinear array to compensate gain difference for two different frequency bands. Simulation results using 3D simulation program, CST MWS(Microwave Studio), for dual band antenna with collinear away show that the maximum gain is about 4.7 dBi at 2.4 ㎓, 5.2 dBi at 5.7 ㎓. We got additional gain of about 2.1 ㏈ with collinear array for 2.4 ㎓ in measurement. Measured results for the dual band antenna with collinear array show applicable performances for access point of wireless LAN.

Wideband ENG Zeroth-Order Resonant Antenna Having Mushroom Shape (버섯 형태를 갖는 광대역 ENG 영차 공진 안테나)

  • Chang, Woo-Cheol;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.997-1002
    • /
    • 2009
  • This Letter presents a wideband ENG(Epsilon Negative) ZOR(Zeroth-Order Resonant) antenna designed on a microstrip line. It has a mushroom structure and its size is only $7.65{\times}1.31{\times}2.37\;mm$(or $0.306{\times}0.053{\times}0.095\;{\lambda}_0$ at 12 GHz) owing to zeroth-order resonance. The design procedures with closed form solutions are provided using transmission line theory considering radiation loss. The measured antenna bandwidth is about 20.0 % at 9.2 GHz and antenna gain is 7.1 dBi despite the compact size.

A Magnetic Resonant Coil for Enhancement of Wireless Power Transfer Efficiency of NFC devices (근접 통신 단말의 무선 전력 전송 효율 향상을 위한 자기 공진코일 시스템)

  • Gim, Yeong-Gyo;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.1-5
    • /
    • 2011
  • A magnetic resonant coil system for enhancement of wireless power transfer efficiency of NFC devices was proposed. The NFC system consists of resonant coils arrange between source coil and device coil. The effects of resonant coil was measured using a 13.56MHz RFID reader and tag system and simulated by 3D RF simulator. The measurement results from RFID reader and tag show that the maximum distance of signal transmission is increased by 96.72% and received voltage of RFID tag is grew by 17.95% thanks to the magnetic resonant coils.

High-Q Resonator with Substrate Integrated Waveguide(SIW) Structure (높은 Q 값을 갖는 기판 집적형 도파관(SIW) 공진기)

  • Yun Tae-Soon;Nam Hee;Lee Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.324-329
    • /
    • 2006
  • In this paper, a resonator with the substrate integrated waveguide(SIW) structure at the satellite communication band is presented. The SIW structure is realized by via-holes on the dielectric substrate and has an advantage of integration with other circuits. For the measurement, a designed back-to-back transition has the insertion loss of 0.4 dB at 18 GHz. Also, the quality factor of the resonator with the SIW structure including back-to-back transition is obtained to be 222. The high-Q resonator with the SIW structure can be used in filter, oscillator, and voltage controlled oscillator.

Design of Chipless RFID Tags Using Electric Field-Coupled Inductive-Capacitive Resonators (전계-결합 유도-용량성 공진기를 이용한 Chipless RFID 태그 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.530-535
    • /
    • 2021
  • In this paper, the design method for a chipless RFID tag using ELC resonators is proposed. A four-bit chipless RFID tag is designed in a two by two array configuration using three ELC resonators with different resonant peak frequencies and one compact IDC resonator. The resonant peak frequency of the bistatic RCS for the IDC resonator is 3.125 GHz, whereas those of the three ELC resonators are adjusted to be at 4.225 GHz, 4.825 GHz, and 5.240 GHz, respectively, by using the gap between the capacitor-shaped strips in the ELC resonator. The spacing between the resonators is 1 mm. Proposed four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. It is observed from experiment results that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.290 GHz, 4.295 GHz, 4.835 GHz, and 5.230 GHz, respectively, which is similar to the simulation results with errors in the range between -2.3% and 0.2%.