• Title/Summary/Keyword: 공진응답

Search Result 258, Processing Time 0.026 seconds

Modeling of non-ideal frequency response in capacitive MEMS resonator (정전 용량형 MEMS 공진기의 비이상적 주파수 응답 모델링)

  • Ko, Hyoung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2010
  • In this paper, modeling of the non-ideal frequency response, especially "notch-and-spike" magnitude phenomenon and phase lag distortion, are discussed. To characterize the non-ideal frequency response, a new electro-mechanical simulation model based on SPICE is proposed using the driving loop of the capacitive vibratory gyroscope. The parasitic components of the driving loop are found to be the major factors of non-ideal frequency response, and it is verified with the measurement results.

A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs (단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.319-326
    • /
    • 2023
  • In this paper, simulation and experimental results are presented, including the implementation of a digital controller for robust output voltage control of a single-phase voltage source inverters (VSIs) and total harmonic distortion (T.H.D.v) analysis. Typically, the VSIs uses a proportional integral (PI) controller for the current controller on the inner loop and a proportional resonant (PR) controller for the voltage controller on the outer loop to control the output voltage. However, non-linear loads still produce high-order odd harmonic distortion. Therefore, in this paper, a proportional multiple resonance (PMR) controller with a resonance controller for odd harmonic frequencies is proposed to suppress harmonic distortion. Analyze the frequency response of controllers for VSI plants and design PMR controllers. Through simulation, the total harmonic distortion characteristics of the output voltage are compared and verified when PI and PMR are used as voltage controllers. Both linear and non-linear loading conditions were considered. Finally, the effectiveness of the PMR controller was demonstrated by applying it to a 3kW VSIs prototype.

Development and Verification of a Large Scale Resonant Column Testing System (대형 공진주시험기의 개발 및 검증)

  • Kim, Nam-Ryong;Ha, Ik-Soo;Shin, Dong-Hoon;Kim, Min-Seub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.295-304
    • /
    • 2012
  • In this study, a resonant column testing system which is the largest in Korea has been developed to evaluate the dynamic deformation characteristics of coarse granular geomaterials, and the performance and the applicability of the testing system have been verified. The system has been developed as a typical Stokoe type device whose boundary conditions are fixed bottom and free top with additional mass, and can adopt a large specimen with 200 mm in diameter and 400 mm in height. The driving and measurement instruments are configured as high performance and precision systems, hence the automated testing system is appropriate to drive enough stress and to measure the behavior precisely for the test in practical manner. The dynamic response of the mechanical components and the applicability of the system have been evaluated using metal specimens as well as polyurethane specimens, and its precision was verified by comparing its results with those from other equipment and/or methods. To confirm the applicability of the large system for coarse geomaterials, the resonant column test results from both large and normal scale apparatus for the same material were compared and it was found that the result can be partially affected by scale. Finally, the dynamic deformation characteristics of coarse geomaterial which is used for construction of large dam was evaluated using the large system and its practicality could be confirmed.

Wave Responses and Ship Motions in a Harbor Excited by Long Waves(I) (항만내 파도응답과 계류선박의 운동해석(I))

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.38-47
    • /
    • 1992
  • The motion response of a ship moored in a rectangular harbor excited by long waves has been studied theoretically and experimentally. Within the framework of potential theory, matched asymptotic expansion techniques are exployed to analyze the problem. The fluid domain is divided into the ocean and the harbor regions for the analysis of wave response in a harbor without ship. The wave responses in both the ocean and the harbor sides are solved first independently in terms of Green's functions, which are the solutions of the Helmholtz equation satisfying appropriate boundary conditions. Slender body approximations are used to obtain the velocity jumps across the ship, which are associated with the symmetric motion modes of the ship. Unknowns contained in each solution are finally determined by matching at an intermediate zone between two neighboring regions. Theoretical results predict the ship motion qualitatively well. The main source of quantitative discrepancies is presumably due to real fluid effects such as separation at the harbor entrance and friction on harbor boundaries.

  • PDF

Design of Frequency Selective Surface with Chessboard Patterns (체스판 형태를 갖는 주파수 선택구조 설계)

  • Lee, In-Gon;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • The frequency selective surfaces(FSSs) with chessboard patterns are proposed and designed for the first time in this paper. We proposed the design parameters like slot and patch size, gap between slots or patches, and dielectric thickness of FSS chessboard unit cell proposed in this paper. Also, we found that the variation of design parameters can be used to control the frequency transmission characteristics like the resonant frequency or bandwidth of FSS. To validate the proposed FSS, we fabricated the proposed FSS with the use of 1.0mm FR4 for the bandpass operation at X-band and measured the transmission characteristics. From the results, the proposed FSS with chessboard type can be widely applied to application of the frequency controllable radome design because we can use the design parameters selectively.

Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method (크리로프 부공간법에 근거한 모델차수축소기법을 통한 배열형 MEMS 공진기의 주파수응답해석)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.878-885
    • /
    • 2009
  • One of important factors in designing MEMS resonators for RF filters is obtaining a desired frequency response function (FRF) within a specific frequency range of interest. Because various array-type MEMS resonators have been recently introduced to improve the filter characteristics such as bandwidth, pass-band, and shape factor, the degrees of freedom (DOF) of finite elements for their FRF calculation dramatically increases and therefore raises computational difficulties. In this paper the Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented as a numerical solution to perform the frequency response analyses of those array-type MEMS resonators in an efficient way. By matching moments at a frequency around the specific operation range of the array-type resonators, the required FRF can be efficiently calculated regardless of their operating frequency from significantly reduced systems. In addition, because of the characteristics of the moment-matching method, a minimal order of reduced system with a prearranged accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations. We also found out that the presented method could obtain the FRF of a $6\times6$ array-type resonator within a seventieth of the computational time necessary for the direct method and in addition FRF calculation by the mode superposition method could not even be completed because of a data overflow with a half after calculation of 9,722 eigenmodes.

Implementation of Ladder Type SAW Filters for Mobile Communication (이동통신 시스템을 위한 사다리형 표면탄성파 필터의 구현)

  • 이택주;정덕진
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.3
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, we designed a highly suppressed sidelobe ladder type RF SAW bandpass filter based on 1-port resonator, for 800 MHz mobile communication system. In order to get the highest device characteristics, we optimized some important parameters such as the electrode thickness, electrode lambda weghting of the reflectors, and static capacitance ratio. Furthermore, we fabricated the Tx and Rx. filter using optimized parameters. Implemented filters can be used in 800 MHz mobile communication system and external impedance matching circuits are not needed. RF filter was fabricated on 36$^{\circ}$LiTaO$_3$ substrates with Al-Cu (W 3 %)and mounted 3.8mm$\times$3.8mm$\times$1.5mm SMD package. Developed filters has 2.3 dB insertion loss in the 25 MHz pass-band, 33MHz with 3-dB insertion loss, stop-band rejection of 30 dB, passband ripple is less than 0.5 The power durability of the filters measured about 3.5W and the maximum temperature variation within -2$0^{\circ}C$~8$0^{\circ}C$ was 0.09 dB/$^{\circ}C$ of 3-dB insertion loss.

Frequency Response Analysis on PCB in Dual Resonant Cavity by Using Stochastical and Topological Modeling (확률론과 위상학적 모델링을 이용한 이중 공진구조 내의 PCB 주파수 응답해석)

  • Jung, In-Hwan;Lee, Jae-Wook;Lee, Young-Seung;Kwon, Jong-Hwa;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.919-929
    • /
    • 2014
  • In recent, the requirements for the safety to the effects of high power electromagnetic wave have been increased along with the development of electricity and electronic equipments. The small sized electronic devices and the various components have been analyzed by using the full-EM simulation and solving a complete set of Maxwell equation. However, the deterministic approach has a drawback and much limitation in the electromagnetic analysis of an electrically large cavity with a high complexity of the structure. In this paper, statistical theory and topological modeling method are combined to analyze the large cavity with a complex structure. In particular, the PWB(Power Balance) method and BLT(Baum-Liu-Tesche) equation are combined and employed to solve the frequency response to the large-scaled cavity with remarkably reduced time-consumption. For instance, a PCB substrate inside box of box are considered as a large structure with a complexity.

Analysis on the Dynamic Responses of Fishing Vessels in a Seaway (파랑중 어선의 동력학 해석)

  • 이희상
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • Ships in a seaway will encounter dangerous situation, such as slamming, stranding, and capsizing. The number of capsizing is small, but the loss due to them is very large from the viewpoint of human life, property, and the environmental pollution. The number of capsizing of fishing vessels is about 62% of total number of capsizing, and the half of them is originated from the operational mistake in a seaway. So the dynamics and the capsizing phenomena are to be studied, and the guide for the safe operation of a fishing vessel in a seaway are to be specified. The hydrodynamic forces consist of radiation forces (which are due to the motion of a ship), Froude-Krylov forces (which is due to the incoming waves), and diffraction forces (which is due to the wave and ship interaction). These forces are calculated by well-known strip method. Using the calculated forces, the motion of a ship in a regular sea is obtained. In the real seaway, the waves are very irregular, therefore the statistical analysis is very helpful. In this paper, using the results of the motion in a regular seaway and the wave spectrum, the motion in a irregular seaway are obtained and analyzed.

  • PDF

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.