Technology innovation activity plays a pivotal role in constructing the entrance barrier for other firms and making process improvement and new product. and these activities give a profit increase and growth to firms. Thus, technology innovation activity can reduce the default risk of firms. However, technology innovation activity can also increase the firm's default risk because technology innovation activity requires too much investment of the firm's resources and has the uncertainty on success. The purpose of this study is to examine the effect of technology innovation activity on the default risk of firms. This study's sample consists of manufacturing firms listed on the Korea Securities Market and The Kosdaq Market from January 1,2000 to December 31, 2008. This study makes use of R&D intensity as an proxy variable of technology innovation activity. The default probability which proxies the default risk of firms is measured by the Merton's(l974) debt pricing model. The main empirical results are as follows. First, from the empirical results, it is found that technology innovation activity has a negative and significant effect on the default risk of firms independent of the Korea Securities Market and Kosdaq Market. In other words, technology innovation activity reduces the default risk of firms. Second, technology innovation activity reduces the default risk of firms independent of firm size, firm age, and credit score. Third, the results of robust analysis also show that technology innovation activity is the important factor which decreases the default risk of firms. These results imply that a manager must show continuous interest and investment in technology innovation activity of one's firm. And a policymaker also need design an economic policy to promote the technology innovation activity of firms.
By using Korean native soybean, traditional meju was prepared in Chuncheon, Kangweondo according to the traditional process. Analysis of physico-chemical, enzymatic and microbiological changes during meju fermentation were carried out in order to obtain a basic information for industrial scale production of meju. The enviroments for natural meju fermentation were $10{\sim}15^{\circ}C$ and $60{\sim}70%{\;}RH$. Moisture content decreased from 59% to 11% (exterior section) and 19% (interior section). the pH of meju rapidly increased up to 8.5 at $33^{rd}{\;}day$ of fermentation and thereafter decreased down to 7.9 at $70^{th}{\;}day$ of fermentation. Souble protein content was 1.47% at initial stage and increased up to $6.31{\sim}7.34%$ at $33^{rd}{\;}day$ of fermentation. Amino nitrogen content was $460{\sim}770{\;}mg%$ at $70^{th}{\;}day$ of fermentation. the color of meju became gradually black and decreased in redness and yellowness. During the process, protease and lipase seemed to play an important role in the digestion of soy protein and fat. Acidic protease activity increased up to $135.9{\sim}152.4{\;}unit/g$ at $33^{rd}{\;}day$ of fermentation and were $181.3{\sim}272.6{\;}unit/g$ at $70^{th}{\;}day$ of fermentation. Lipase activity increased up to 6 unit/g (interior section) and 15 unit/g (exterior section) at $70^{th}{\;}day$ of fermentation. the viable cell count of meju was at the level of $10^8{\;}CFU/g$ during the overall fermentation period. Aerobic halophilic count was $1.51{\times}10^7{\;}CFU/g$ at initial stage and maintained $10^8{\;}CFU/g$ level during the process. Initial anaerobic cell count was $2.0^9{\times}10^4{\;}CFU/g$ and increased up to $10^5{\;}CFU/g$ level at 47 days. Yeast and mold counts were $10^4{\sim}10^5{\;}CFU/g$ for the fermentation period.
The purpose of this study was to determine the optimum sterilization conditions for the production of retorted steamed egg using response surface methodology. Sterilization processes for eighteen conditions using varying sterilization temperature ($X_1$), time ($X_2$), and method ($X_3$) as the independent variables were carried out through a $3^2{\times}2$ experimental factorial design. Quality evaluations after sterilization included measurements of $F_0$ value ($Y_1$), peak stress ($Y_2$), pH ($Y_3$), color value ($Y_{4-6}$), and organoleptic test [preference for appearance ($Y_7$), overall acceptability ($Y_8$), and preference for texture ($Y_9$) and egg taste ($Y_{10}$)]. Dependent variables ($Y_{1-10}$) of eighteen conditions were more affected by temperature and time than by the sterilization method. Eight factors were selected among the dependent variables as significant factors related to the quality of the steamed egg. Finally, by establishing an optimum range of each dependent variable and contour analysis, the optimum sterilization conditions for the production of steamed egg were determined to be $120^{\circ}C$ for 25 min using a 2-step sterilization process.
In order to classify aerosol type, Aerosol Optical Thickness (AOT) and Fine mode Fraction (FF), which is the optical thickness ratio of small particles$(<1{\mu}m)$ to total particles, data from MODIS (MODerate Imaging Spectraradiometer) aerosol products were analyzed over North-East Asia during one year period of 2005. A study area was in the ocean region of $20^{\circ}N\sim50^{\circ}N$ and $110^{\circ}E\simt50^{\circ}E$. Three main atmospheric aerosols such as dust, sea-salt, and pollution can be classified by using the relationship between AOT and FF. Dust aerosol has frequently observed over the study area with relatively high aerosol loading (AOT>0.3) of large particles (FF<0.65) and its contribution to total AOT in spring was up to 24.0%. Pollution aerosol, which is originated from anthropogenic sources as well as a natural process like biomass burning, has observed in the regime of high FF (>0.65) with wide AOT variation. Average pollution AOT was $0.31{\pm}0.05$ and its contribution to total AOT was 79.8% in summer. Characteristic of sea-salt aerosol was identified with low AOT (<0.3), almost below 0.1, and slightly higher FF than dust and lower FF than pollution. Seasonal analysis results show that maximum AOT $(0.33{\pm}0.11)$ with FF $(0.66{\pm}0.21)$ in spring and minimum AOT $(0.19{\pm}0.05)$, FF $(0.60{\pm}0.14)$ in fall were observed in the study area. Spatial characteristic was that AOT increasing trend is observed as closing to the eastern part of China due to transport of aerosols from China by the prevailing westerlies.
Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
KEPCO Journal on Electric Power and Energy
/
v.5
no.3
/
pp.209-213
/
2019
Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.
With the growing importance of technology innovation as a key factor for firms' competitive advantage, 'innovation persistence' became also an important research subject. 'Innovation Persistence' is a concept that indicates whether or not firms' innovation activity or performance continues. However, the data used for innovation studies are carried out as cross-sectional surveys in most countries. For this reason, studies dealing with longitudinal aspect of innovation persistence are rare. In particular, there is almost no research on innovation persistence using Korean innovation survey data. This study reviews the concepts and characteristics of innovation persistence based on extant literature, and perform an empirical analysis on the status and features of Korean firms' technology innovation persistence. Based on the data of the Korean Innovation Survey (KIS) conducted every other year from 2012 to 2018, panel data on 3,379 firms which observed multiple times are constructed. As a result, only part of the firms with persistent innovation were observed (for innovation performance 10~12%, for innovation activity 15~17%), and it was found that the persistence of non-innovation was remarkable(about 52~57%). And it was confirmed that the persistence of innovation activities is stronger than that of innovation performance. Besides, some features by sub-types of innovation appeared. Product innovation showed higher persistence than process innovation, and internal R&D also showed higher persistence than joint/external R&D. As a result of additional logit analysis to identify factors, it was found that radical or gradual product innovation is the most influential factor in persisting innovation in the next period. Since the sample selection bias due to a limitations of raw data might exist in the panel data constructed in this study, it should be noted that faulty generalization of the results are not allowed. Nevertheless, this is the first study to examine the technology innovation persistence targeting Korean firms and is expected to be a starting point for follow-up studies. It is anticipated that advanced research results will be drawn through the establishment of official panel data and improved methodologies.
In this paper, we propose the development of deep learning structure to improve quality of polygonal containers. The deep learning structure consists of a convolution layer, a bottleneck layer, a fully connect layer, and a softmax layer. The convolution layer is a layer that obtains a feature image by performing a convolution 3x3 operation on the input image or the feature image of the previous layer with several feature filters. The bottleneck layer selects only the optimal features among the features on the feature image extracted through the convolution layer, reduces the channel to a convolution 1x1 ReLU, and performs a convolution 3x3 ReLU. The global average pooling operation performed after going through the bottleneck layer reduces the size of the feature image by selecting only the optimal features among the features of the feature image extracted through the convolution layer. The fully connect layer outputs the output data through 6 fully connect layers. The softmax layer multiplies and multiplies the value between the value of the input layer node and the target node to be calculated, and converts it into a value between 0 and 1 through an activation function. After the learning is completed, the recognition process classifies non-circular glass bottles by performing image acquisition using a camera, measuring position detection, and non-circular glass bottle classification using deep learning as in the learning process. In order to evaluate the performance of the deep learning structure to improve quality of polygonal containers, as a result of an experiment at an authorized testing institute, it was calculated to be at the same level as the world's highest level with 99% good/defective discrimination accuracy. Inspection time averaged 1.7 seconds, which was calculated within the operating time standards of production processes using non-circular machine vision systems. Therefore, the effectiveness of the performance of the deep learning structure to improve quality of polygonal containers proposed in this paper was proven.
Park, In-soon;Na, En-soo;Jang, Dong-soon;Paek, Young-soo
Food Engineering Progress
/
v.14
no.2
/
pp.85-91
/
2010
In the food process, twist screen is widely used to divide particles on the basis of size. As screen equipped in the twist screen perfoms an important part in the particle size distribution mechanism, the contact area of screen and particles, retention time of particles on the screen, mesh and string thickness of screen and the flow pattern of particles on the screen are major points of the separation efficiency. To improve the separation efficiency, increase the retention time and control the flow pattern of particles, screen frame dam and spiral blockage are installed on the sieve of twist screen ${\emptyset}$ 1200 and ${\emptyset}$ 1500. Twist screen ${\emptyset}$ 1500 with frame dam treated similar separation capacity, 37% higher separation ratio and less non-separated particles of product output 1 than general twist screen. Twist screens with frame dam and spiral blockage showed less treatment capacity, three times higher division ratio and entire separation than general twist screen.
Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
Journal of Food Hygiene and Safety
/
v.34
no.1
/
pp.1-12
/
2019
The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.
Journal of the Computational Structural Engineering Institute of Korea
/
v.32
no.1
/
pp.65-73
/
2019
In order to increase the production efficiency of the ship and shorten the production cycle, it is important to evaluate the accuracy of the ship components efficiently during the drying cycle. The accuracy control of the block is important for shortening the ship process, reducing the cost, and improving the accuracy of the ship. Some systems have been developed and used mainly in large shipyards, but in some cases, they are measured and managed using conventional measuring instruments such as tape measure and beam, optical instruments as optical equipment, In order to perform accuracy control, these tools and equipment as well as equipment for recording measurement data and paper drawings for measuring the measurement position are inevitably combined. The measured results are managed by the accuracy control system through manual input or recording device. In this case, the measurement result is influenced by the work environment and the skill level of the worker. Also, in the measurement result management side, there are a human error about the lack of the measurement result creation, the lack of the management sheet management, And costs are lost in terms of efficiency due to consumption. The purpose of this study is to improve the working environment in the existing accuracy management process by using the augmented reality technology to visualize the measurement information on the actual block and to obtain the measurement information And a smart management system based on augmented reality that can effectively manage the accuracy management data through interworking with measurement equipment. We confirmed the applicability of the proposed system to the accuracy control through the prototype implementation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.