Browse > Article
http://dx.doi.org/10.7780/kjrs.2006.22.6.495

Application of MODIS Aerosol Data for Aerosol Type Classification  

Lee, Dong-Ha (Advanced Environmental Monitoring Research Center (ADEMRC) Dept. of Environmental Science & Engineering Gwangju Institute of Science & Technology (GIST))
Lee, Kwon-Ho (Advanced Environmental Monitoring Research Center (ADEMRC) Dept. of Environmental Science & Engineering Gwangju Institute of Science & Technology (GIST))
Kim, Young-Joon (Advanced Environmental Monitoring Research Center (ADEMRC) Dept. of Environmental Science & Engineering Gwangju Institute of Science & Technology (GIST))
Publication Information
Korean Journal of Remote Sensing / v.22, no.6, 2006 , pp. 495-505 More about this Journal
Abstract
In order to classify aerosol type, Aerosol Optical Thickness (AOT) and Fine mode Fraction (FF), which is the optical thickness ratio of small particles$(<1{\mu}m)$ to total particles, data from MODIS (MODerate Imaging Spectraradiometer) aerosol products were analyzed over North-East Asia during one year period of 2005. A study area was in the ocean region of $20^{\circ}N\sim50^{\circ}N$ and $110^{\circ}E\simt50^{\circ}E$. Three main atmospheric aerosols such as dust, sea-salt, and pollution can be classified by using the relationship between AOT and FF. Dust aerosol has frequently observed over the study area with relatively high aerosol loading (AOT>0.3) of large particles (FF<0.65) and its contribution to total AOT in spring was up to 24.0%. Pollution aerosol, which is originated from anthropogenic sources as well as a natural process like biomass burning, has observed in the regime of high FF (>0.65) with wide AOT variation. Average pollution AOT was $0.31{\pm}0.05$ and its contribution to total AOT was 79.8% in summer. Characteristic of sea-salt aerosol was identified with low AOT (<0.3), almost below 0.1, and slightly higher FF than dust and lower FF than pollution. Seasonal analysis results show that maximum AOT $(0.33{\pm}0.11)$ with FF $(0.66{\pm}0.21)$ in spring and minimum AOT $(0.19{\pm}0.05)$, FF $(0.60{\pm}0.14)$ in fall were observed in the study area. Spatial characteristic was that AOT increasing trend is observed as closing to the eastern part of China due to transport of aerosols from China by the prevailing westerlies.
Keywords
MODIS; MOD04; AOT; FF; Aerosol type classification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 이권호, 홍천상, 김영준, 2004a. MODIS와 TOMS 자료를 이용한 2001년 동북아시아 지역의 대기 에어로졸 모니터링, 대한원격탐사학회지, 20(2): 77-89
2 Smirnov, A., Yershov, O., and Villevalde, Y., 1995. Measurement of aerosol optical depth in the Atlantic and Mediterranean Sea, Proc. SPIE Int. Soc. Opt. Eng., 2582: 203-325
3 Whitby, K. T. and B. K. Cantrell, 1975. Atmospheric Aerosols - Characteristics and Measurement, ICESA Conference Proceedings, IEEE #75-CH 1004-1 ICESA, paper 29-1: 6
4 Twomey, S. A., 1997. The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34: 1149-1152   DOI
5 Kaufman, Y. J., A. Smirnov, B. N. Holben, and O. Dubovik, 2001. Baseline maritime aerosol: Methodology to derive the optical thickness and scattering properties, Geophys. Res. Lett., 28: 3251-3254   DOI   ScienceOn
6 Kaufman, Y. J., Tanre, D., Boucher, and O., 2002. A satellite view of aerosols in the climate system, Nature, 419: 215-223   DOI   ScienceOn
7 이권호, 김영준, 2004b. 인공위성 자료와 AERONET 관측자료를 이용한 러시아산불 시 발생한 에어로졸의 중장거리 모니터링, 한국대기환경학회지, 20(4): 437-450
8 Tanre, D., L. A. Remer, Y. J. Kaufman, S. Mattoo, P. V. Hobbs, J. M. Livingston, P. B. Russell, and A. Smirnov, 1999. Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS Airborne Simulator during TARFOX. J. Geophys. Res., 104: 2261-2278   DOI
9 Lee, K. H., J. E. Kim, Y. J. Kim, J. Kim, and W. Von Hoyningen-Huene, 2005. Impact of the Smoke Aerosol from Russian Forest Fires on the Atmospheric Environment over Korea during May 2003, Atmos. Environ., 39(2): 85-99   DOI   ScienceOn
10 Barnaba F. and G. P. Gobbi, 2004. Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001, Atmos. Chem. Phys., 4: 2367-2391   DOI
11 Kuring, N., R. Simmon, and J. Acker, 1999. SeaWiFS observes transport of Asian dust over the Pacific Ocean, http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/OCDST/asian_dust.html
12 Rosenfield, D. and I. M. Lensky, 1998. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds, Bull. Amer. Meteor. Soc., 79: 2457-2476   DOI   ScienceOn
13 Chun, Y., K. Boo, J. Kim, S. Park, and M. Lee, 2001. Synopsis, transport, and physical characteristics of Asian dust in Korea, J. Geophys. Res., 106(D16): 18461-18469   DOI
14 Tanre, D., Y. J. Kaufman, B. N. Holben, B. Chatenet, A. Karnieli, F. Lavenu, L. Blarel, O. Dubovik, L. A. Remer, and A. Smirnov, 2001. Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum, J. Geophys. Res., 106, 18: 205-218
15 Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanre, D., Holben, and B. N., 2002. Validation of MODIS aerosol optical depth retrieval overland, Geophys. Res. Lett., 29, 2001GL013205
16 Remer, L. A., Tanré, D., Kaufman, Y. J., Ichoku, C., Mattoo, S., Levy, R., Chu, D. A., Holben, B. N., Dubovik, O., Ahmad, Z., Smirnov, A., Martins, J. V., and Li, R.-R., 2002. Validation of MODIS aerosol retrieval over ocean, Geophys. Res. Lett., 29, 2001GL013204
17 Remer L. A., Kaufman Y. J., Tanre D., Mattoo S., Chu D. A., Martins J. V., Li R. R., Ichoku C., Levy R. C., Kleidman R. G., Eck T. F., Vermote E., and Holben B. N., 2005. The MODIS aerosol algorithm, products, and validation, Journal of Atmospheric Sciences, 62(4): 947-973   DOI   ScienceOn
18 King, M. D., Y. J. Kaufman, D. Tanre, and T. Nakajima, 1999. Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Amer. Meteor. Soc., 80: 2229-2259   DOI