• Title/Summary/Keyword: 공아

Search Result 164,717, Processing Time 0.156 seconds

Anti-obesogenic Effect of Brassica juncea Extract on Bisphenol-A Induced Adipogenesis of 3T3-L1 Cells (비스페놀 A (Bisphenol-A)로 유도된 지방세포 분화에 미치는 갓 추출물의 항오비소겐 효과)

  • Lee, Se-jeong;Na, Uoon-Joo;Choi, Sun-Il;Han, Xionggao;Men, Xiao;Lee, Youn Hwan;Kim, Hyun Duk;Kim, Yoon Jung;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.6
    • /
    • pp.528-536
    • /
    • 2021
  • The purpose of the study was to investigate the content of sinigrin, an index component, in Brassica juncea extract and to evaluate the differentiation of lipocytes, inhibition of production of reactive oxygen species (ROS) and reduction of protein production by lipogenic factors (PPARγ, C/EBPα, aP2) in the processing of Brassica juncea extract and sinigrin in 3T3-L1 preadipocytes which induces Bisphenol A (BPA), an endocrine disrupting environmental hormone. From the investigation, the content of sinigrin in Brassica juncea extract, measured by HPLC, is found to be 21.27±0.2 mg/g. The XTT assay result on BPA-derived 3T3-L1 adipocytes shows there is no cytotoxicity found from 180 µM of sinigrin and 300 ㎍/mL of Brassica juncea extract. Moreover, both intracellular lipid accumulation and ROS production during differentiation of lipocyte are significantly reduced in cells processed with Brassica juncea extract and sinigrin. Lastly, it was also found that the production of transcription factors of lipocyte differentiation, PPARγ, C/EBPα and aP2, were found to be suppressed by the application of Brassica juncea extract and sinigrin. Such results reveals that Brassica juncea is effective in not only suppressing lipid accumulation in the environmental hormone bisphenol A-derived lipocyte, but also in reducing the ROS. The sinigrin-containing Brassica juncea is highly expected to be used in natural functional supplements that prevents the lipid metabolism disorders caused by BPA. There are necessities for additional clinical research and follow-up studies on the in vivo model to verify the relevant mechanisms.

Effects of Traffic Volume and Air Quality on the Characteristic of Urban Park Soil (교통량과 대기질이 도시 공원 토양 특성에 미치는 영향)

  • Joo, Sunyoung;Lee, Hyunjin;Jeon, Juhui;Seo, Inhye;Yoo, Gayoung
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • This study aims to understand how mobile and stationary air pollution sources affect the air quality and soil properties in urban parks. We selected three sites of urban parks in Seoul as follows: Ha-neul Park in Mapo-gu (Site_M), Ill-won Eco-Park in Gangnam-gu (Site_G), and Yangjae Citizen's Forest in Seocho-gu (Site_Y), and compared the results of each site's traffic volume, air quality concentration, and soil analysis. Traffic volume was high in Site_M, followed by Site_G and Y; Site_M and G were closer to the resource recovery facility than Site_Y. Hence, we hypothesized that PM and NO2 concentrations in the atmosphere were higher in Site_M than Site_G and Y, causing different soil nitrogen content among sites due to different atmospheric deposition. Consistent with our hypothesis, the concentrations of PM2.5 and NO2 were higher in Site_M and G than Site_Y, while Site_Y had higher PM10 than other sites. The soil NO3- contents showed no significant difference among three sites, whereas the soil NH4+ content was extremely high in Site_Y. This high content of soil NH4+ is thought to be due to acidification from excessive fertilization. Lower soil pH of Site_Y further supported the evidence of heavy fertilization in this site. Overall nitrogen dynamics implies that soil nitrogen status is more influenced by park management such as fertilization rather than atmospheric deposition. Despite of lower soil NH4+ content of Site_M and G than Y, vegetation vitality looked similar among three sites. This indirectly indicates that excessive fertilizer input in urban park management needs to be reconsidered. This study showed that even if the air quality was different due to mobile and stationary sources, it did not directly affect the soil nitrogen nutrient status of the adjacent urban park.

Analysis of Rice Blast Outbreaks in Korea through Text Mining (텍스트 마이닝을 통한 우리나라의 벼 도열병 발생 개황 분석)

  • Song, Sungmin;Chung, Hyunjung;Kim, Kwang-Hyung;Kim, Ki-Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.113-121
    • /
    • 2022
  • Rice blast is a major plant disease that occurs worldwide and significantly reduces rice yields. Rice blast disease occurs periodically in Korea, causing significant socio-economic damage due to the unique status of rice as a major staple crop. A disease outbreak prediction system is required for preventing rice blast disease. Epidemiological investigations of disease outbreaks can aid in decision-making for plant disease management. Currently, plant disease prediction and epidemiological investigations are mainly based on quantitatively measurable, structured data such as crop growth and damage, weather, and other environmental factors. On the other hand, text data related to the occurrence of plant diseases are accumulated along with the structured data. However, epidemiological investigations using these unstructured data have not been conducted. The useful information extracted using unstructured data can be used for more effective plant disease management. This study analyzed news articles related to the rice blast disease through text mining to investigate the years and provinces where rice blast disease occurred most in Korea. Moreover, the average temperature, total precipitation, sunshine hours, and supplied rice varieties in the regions were also analyzed. Through these data, it was estimated that the primary causes of the nationwide outbreak in 2020 and the major outbreak in Jeonbuk region in 2021 were meteorological factors. These results obtained through text mining can be combined with deep learning technology to be used as a tool to investigate the epidemiology of rice blast disease in the future.

Extraction and Analysis of Ganghwa Tidal Flat Channels Using TanDEM-X DEM (TanDEM-X DEM을 이용한 강화도 갯벌 조류로 추출과 분석)

  • Yun, Ga-Ram;Kim, Lyn;Kim, Nam-Yeong;Kim, Na-Gyeong;Jang, Yun-Yeong;Choi, Yeong-Jin;Lee, Seung-Kuk
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.411-420
    • /
    • 2022
  • Recently, research using remote sensing has been active in various fields such as environment, science, and society. The results of research using remote sensing are not only numerical results, but also play an important role in solving and preventing social and scientific problems. The purpose of this thesis is to tell the correlation between the data provided and each data by using remote sensing technology for the tidal flat environment. The purpose of this study is to obtain high-resolution data using artificial satellites during remote sensing to find out information on tidal flat currents. Tidal flats created by erosion, sedimentation, low tide, and high tide contain information about the tidal flat slope and information about the ecosystem. Therefore, it can be considered as one of the very important studies to analyze the overall tidal flow channel. This paper creates a DEM (Digital Elevation Model) through TanDEM-X, and DEM is used as the most basic data to create a tidal channel. The research area is a tidal flat located in the middle of the west coast of Ganghwado tidal flat. By analyzing the tidal channel created, various information such as the slope direction of Ganghwado tidal flat and the shape of the tidal channel can be grasped. It is expected that the results of this study will increase the importance and necessity of using DEM data for tidal flat research in the future, and that high-quality results can be obtained.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.

A Study on the Characteristics of Ca(OH)2 According to the Calcination Conditions of Oyster Shells and Its Application for Exterior Water Paints (굴 패각의 소성 조건에 따른 소석회의 특성과 외부용 수성 도료 적용 연구)

  • Hwang, Dae Ju;Yu, Young Hwan;Han, Chang Soo;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.594-605
    • /
    • 2022
  • CaO was prepared by calcining for oyster shells using a microwave kiln. It was analyzed to Ca(OH)2 synthed on hydration reaction from prepared CaO. The synthesized Ca(OH)2 was formulated as an external water paint. Oyster shells (325 mesh, 43 ㎛) were decarbonized for (a) 950 ℃/1 hr and (b) 1,150 ℃/1 hr to prepare CaO. In the calcination condition of (a), CaO was 56.7 wt%, and in the calcination condition of (b), CaO was 100 wt%. To compare CaO by calcination of oyster shells with that of limestone, limestone (25~30 mm) was decarbonized at 950 ℃/1 hr to prepare CaO, and as a result of the analysis(XRD), it was analyzed as CaO 100 wt%. CaO was prepared under the calcining conditions of oyster shells (b) 1,150 ℃/1 hr, and Ca(OH)2 was synthesized through hydration. Hydration conditions of the prepared CaO were (a) CaO : H2O(100 g : 200 g) and (b) CaO : H2O(100 g : 400 g). As a result of the hydration reaction, it was confirmed as low reactivity. 100 wt% of Ca(OH)2 was synthesized. In particular, Ca(OH)2 synthesized under the hydration condition of (a) was analyzed in a plate shape. An external water paint was formulated with Ca(OH)2 synthesized from oyster shells as the main component. When 15 items of the external water paint standard specification (KS M 6010) were analyzed, it was confirmed that all other criteria were satisfied except for freezing stability.

Evaluation of waterlogging tolerance using chlorophyll fluorescence reaction in the seedlings of Korean ginseng (Panax ginseng C. A. Meyer) accessions (엽록소 형광반응을 이용한 인삼 유전자원의 습해 스트레스 평가)

  • Jee, Moo Geun;Hong, Young Ki;Kim, Sun Ick;Park, Yong Chan;Lee, Ka Soon;Jang, Won Suk;Kwon, A Reum;Seong, Bong Jae;Kim, Me-Sun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.240-249
    • /
    • 2022
  • Measuring chlorophyll fluorescence (CF) is a useful tool for assessing a plant's ability to tolerate abiotic stresses such as drought, waterlogging and high temperature. Korean ginseng is highly sensitive to water stress in paddy fields. To evaluate the possibility of non-destructively diagnosing waterlogging stress using chlorophyll fluorescence (CF) imaging techniques, we screened 57 ginseng accessions for waterlogging tolerance. To evaluate waterlogging tolerance among the 2-year-old Korean ginseng accessions, we treated ginseng plants with water stress for 25 days. The physiological disorder rate was characterized through visual assessment (an assigned score of 0-5). The physiological disorder rates of Geumjin, Geumsun and GS00-58 were lower than that of other accessions. In contrast, lines GS97-62, GS97-69 and GS98-1-5 were deemed susceptible. Root traits, chlorophyll content and the reduction rates decreased in most ginseng accessions. Further, these metrics were significantly lower in susceptible genotypes compared to resistant ones. All CF parameters showed a positive or negative response to waterlogging stress, and this response continuously increased over the treatment time among the genotypes. The CF parameter Fv/Fm was used to screen the 57 accessions, and the results showed clear differences in Fv/Fm between the susceptible and resistant genotypes. Susceptible genotypes had an especially low Fv/Fm value of less than 0.8, reflecting damage to the reaction center of photosystem II. It is concluded that Fv/Fm can be used as a CF parameter index for screening waterlogging stress tolerance in ginseng genotypes.

Development of Potassium Impregnated Carbon Absorbents for Indoor CO2 Adsorption (K계열 함침 탄소계 흡착제의 실내 저농도 이산화탄소 흡착성능 강화)

  • Jeong, Se-Eun;Wang, Shuang;Lee, Yu-Ri;Won, Yooseob;Kim, Jae-Young;Jang, Jae Jun;Kim, Hana;Jo, Sung-ho;Park, Young Cheol;Nam, Hyungseok
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.606-612
    • /
    • 2022
  • Relatively high indoor CO2 concentration (>1,000 ppm) has a negative impact on human health. In this work, indoor CO2 adsorbent was developed by impregnating KOH or K2CO3 on commercial activated carbon, named as KOH/AC and K2CO3/AC. Commercial activated carbon (AC) showed relatively high BET surface area (929 m2/g) whereas KOH/AC and K2CO3/AC presented lower BET surface area of 13.6 m2/g and 289 m2/g. Two experimental methods of TGA (2,000 ppmCO2, weight basis) and chamber test (initial concentration: 2,000 ppmCO2, CO2 IR analyzer) were used to investigate the adsorption capacity. KOH/AC and K2CO3/AC exhibited similar adsorption capacities (145~150 mgCO2/g), higher than K2CO3/Al+Si supports adsorbent (84.1 mgCO2/gsample). Similarly, chamber test also showed similar trend. Both KOH/AC and K2CO3/AC represented higher adsorption capacities (KOH/AC: 93.5 mgCO2/g K2CO3/AC: 94.5 mgCO2/gsample) K2CO3/Al+Si supports. This is due to the KOH or K2CO3 impregnation increased alkaline active sites (chemical adsorption), which is beneficial for CO2 adsorption. In addition, the regeneration test results showed both K-based adsorbents pose a good regeneration and reusability. Finally, the current study suggested that both KOH/AC and K2CO3/AC have a great potential to be used as CO2 adsorbent for indoor CO2 adsorption.

Applying the Theory of Affordance to the Design of Water Purification Facilities : Focusing on the Case of Binh Dinh in Vietnam (정수시설 설계에 대한 어포던스 이론 적용 연구: 베트남 빈딘 사례를 중심으로)

  • Park, Hye-Rin;Hwang, Yeo-Kyeong;Kim, Seul-Gi;Lee, Jun-Min;Hwang, Jun-Seok
    • Journal of Appropriate Technology
    • /
    • v.6 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • Sustainable appropriate technology requires user-centered design with consideration of the political, cultural and environmental aspects of the area. However, in the preparation of appropriate technology, there is a limit to the prior grasp of the user's intention and experience leading to the actual behavior of the user after the dissemination. As a result, appropriate technologies are often inconvenient for practical use or used for other purposes, contrary to the designer's intention. This study analyzes the case of appropriate technology with an analysis framework that reflects Maier's affordance theory, and proposes a design solution that can overcome the limitations of existing design. Affordance theory is the theory of factors that cause the user to identify and use features through interpretation based on prior knowledge and experience about things. The analysis cases in this study are the interviews with the designers, management education materials, and manager interviews for water purification systems at three of six schools in Binh Dinh Province, Vietnam, from August 2015 to January 2018. The case was attempted to be improved by periodic installation, maintenance, and inspection, but similar problems continued to occur. First, the facility inspections and manager interviews are compared with manager training materials distributed at the time of installation to find inconsistencies. Next, we analyze the designer's intended affordance and the affordances that actually influenced the management behavior. And then, we propose design solutions based on commonly found problems and affordances. This study suggests that it is necessary to apply the design considering the user's behavior before distributing the appropriate technology, and this study will be precedent in the process of finding the improvement through the analysis framework based on the affordance.