• Title/Summary/Keyword: 공성

Search Result 390, Processing Time 0.02 seconds

Knoevenagel Reaction in Water Catalyzed by Mesoporous Silica Materials Synthesized from Industrial Waste Coal Fly Ash (석탄회 산업폐기물로부터 제조한 메조다공성 실리카소재를 촉매로 사용하는 Knoevenagel 수용액 반응)

  • Dhokte, Aashish O.;Khillare, Santosh L.;Lande, Machhindra K.;Arbad, Balasaheb R.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.430-435
    • /
    • 2011
  • Coal fly ash of thermal power plants converted into mesoporous materials MCM-41. The synthesized material was characterized by XRD, FT-IR, SEM, and EDS techniques. The catalytic activity of prepared material was studied for the synthesis of 5-arylindene malononitriles via Knoevenagel condensation of aromatic aldehydes and malonontrile is described. The features of present method are easy handling, stability, reusability, and eco-friendliness of catalyst, high yields, short reaction time, simple experimental and work up procedure.

A Study on the Evaluation of Field Installation Damage and Strength Reduction Factor of Geogrid for Reinforced Retaining Wall (보강토 옹벽용 지오그리드의 현장 내시공성 및 강도 감소계수 평가에 관한 연구)

  • Park, Juhwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.5-12
    • /
    • 2012
  • Recently the installation of reinforced earth retaining walls in the domestic construction site has increased, surpassing conventional RC walls. These reinforced walls have various types depending on the reinforcing material, installation method and the form of face panel. However, there are difficulties in design and construction management due to the unproved safety of construction method. In case of reinforcing materials, despite the fact that they come in all different sizes and types produced by small businesses or partially imported with cheap price and low quality, no proper standards for designing the walls have been suggested. In order to apply reinforced retaining wall system to broad cases and design the walls effectively considering site conditions, specific design and construction guidelines for efficient construction management are needed. In conclusion, this study verified that reduction factors can be greatly affected by grain sizes and stiffness of backfill materials and granularity range, therefore in case of relatively large construction site, it is required to redesign the reinforced retaining wall by evaluating site installation resistance test, applying respective reduction factors to each backfill material and select the right geogrid depending on the usage of retaining wall so as to enhance the safety of reinforced earth retaining walls with efficiency.

Preparation and Characterization of Biodegradable Superporous Hydrogels (생분해성을 갖는 초다공성 수화젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Choi, You-Mee;Park, Jeong-Sook;Kim, So-Yeon;Park, Ki-Nam;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.469-476
    • /
    • 2009
  • In this study, biodegradable superporous hydrogels(SPHs) with fast swelling and superabsorbent properties were prepared using biodegradable crosslinkers and their physicochemical properties were characterized. A biodegradable crosslinker (PLA-PEG-PLA DA) was synthesized by a ring opening polymerization of D,L-lactide (LA) using hydrophilic poly(ethylene glycol) as a macroinitiator, followed by diacrylation of the end groups for the introduction of polymerizable vinyl groups. Various kinds of hydrogels with different chemical compositions were prepared and characterized in terms of swelling ratio, swelling kinetics, and biodegradation properties. The synthetic results were confirmed by $^1H$-NMR, FT-IR and GPC measurements, and the porous structures of the prepared SPHs and their porosities were identified by a scanning electron microscope and mercury porosimetry, respectively. The physicochemical properties of SPHs could be controlled by varying their chemical compositions and their cytotoxicity were found to be very low by MTT assay.