• Title/Summary/Keyword: 공면 전송선로

Search Result 2, Processing Time 0.019 seconds

Coplanar Waveguides Fabricated on Oxidized Porous Silicon Air-Bridge for MMIC Application (다공질 실리콘 산화막 Air-Bridge 기판 위에 제작된 MMIC용 공면 전송선)

  • 박정용;이종현
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.285-289
    • /
    • 2003
  • This paper proposes a 10 ${\mu}{\textrm}{m}$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and rnicrornachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation (50$0^{\circ}C$, 1 hr at $H_2O$/O$_2$) and rapid thermal oxidation (RTO) process (105$0^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to 10 ${\mu}{\textrm}{m}$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 1 dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about - 20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.

Fabrication of Thick Silicon Dioxide Air-Bridge and Coplanar Waveguide for RF Application Using Complex Oxidation Process and MEMS Technology (복합 산화법과 MEMS 기술을 이용한 RF용 두꺼운 산화막 에어 브리지 및 공면 전송선의 제조)

  • Kim, Kook-Jin;Park, Jeong-Yong;Lee, Dong-In;Lee, Bong-Hee;Bae, Yong-Hok;Lee, Jong-Hyun;Park, Se-Il
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • This paper proposes a $10\;{\mu}m$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and micromachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation ($500^{\circ}C$, 1 hr at $H_2O/O_2$) and rapid thermal oxidation (RTO) process ($1050^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to $10\;{\mu}m$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 2dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about -20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.