• Title/Summary/Keyword: 공대지무장

Search Result 13, Processing Time 0.023 seconds

A Study on the Accuracy Analysis for Air-to-Ground Weapon Delivery (공대지 무장투하정확도 해석에 대한 연구)

  • Jo, Han-Sang;Song, Chae-Il;Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.741-746
    • /
    • 2007
  • In this paper, we propose an accuracy analysis method for air-to-ground weapon delivery. The lethality, which is one of the most important factor to evaluate combat effectiveness of a fighter, depends on the capability to improve the accuracy of the conventional weapon delivery. We present error elements which affect the error analysis for air-to-ground weapon delivery from the initial design phase to the final validation phase. And we introduce an accuracy analysis method to reflect the error elements and to evaluate them quantitatively. We assume zero bias-error and consider random error for the weapon delivery accuracy analysis.

The Fault Analysis Model for Air-to-Ground Weapon Delivery using Testing-Based Software Fault Localization (소프트웨어 오류 추정 기법을 활용한 공대지 사격 오류 요인 분석 모델)

  • Kim, Jae-Hwan;Choi, Kyung-Hee;Chung, Ki-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.59-67
    • /
    • 2011
  • This paper proposes a model to analyze the fault factors of air-to-ground weapon delivery utilizing software fault localization methods. In the previous study, to figure out the factors to affect the accuracy of air-to-ground weapon delivery, the FBEL (Factor-based Error Localization) method had been proposed and the fault factors were analyzed based on the method. But in the study, the correlation between weapon delivery accuracy and the fault factors could not be revealed because the firing accuracy among several factors was fixed. In this paper we propose a more precise fault analysis model driven through a study of the correlation among the fault factors of weapon delivery, and a method to estimate the possibility of faults with the limited number of test cases utilizing the model. The effectiveness of proposed method is verified through the simulation utilizing real delivery data. and weapons delivery testing in the evaluation of which element affecting the accuracy of analysis that was available to be used successfully.

The Factor Localization for Air-to-Ground Weapon Delivery Error Using Fault Localization (결함위치추정 기법을 이용한 공대지 항공무장의 오류 요인 분석)

  • Kim, Jae-Hwan;Choi, Kyung-Hee;Chung, Gi-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.551-560
    • /
    • 2010
  • In this paper, we suggest a localization method of factors affecting the accuracy of Air-to-Ground weapon delivery. The proposed method, called FBEL(Factor-Based Error Localization), is based on the fault localization technique widely utilized in the realm of software engineering field. FBEL localizes the major factors affecting the performance of weapon delivery. To analyze the effectiveness and the applicability of FBEL, we applied FBEL to real firing data and got the major factors caused the errors. We expect that the method could contribute to improve the quality of weapon delivery system. We also expect that it may aid improvement of pilot capability greatly, if it is applied to pilot firing training.

Location Information Extraction of An Air-to-Ground Target using Helmet Mounted Display Device (Helmet Mounted Display 장비를 사용한 공대지 표적의 위치정보 획득)

  • Bang, Kuk-Ryul;Ha, Seok-Wun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • An attack aircraft such as a fighter needs an accurate location information of a target for the exact air-to-air or air-to-ground attack. In this paper a method is proposed that generates a location information of an air-to-ground target just in use of HMD without the target tracking sensors such as the radar and the FLIR. HMD is an embedded device to induce the seeker header to indicate the direction of a pilot's head. As a simulation result, it is founded that the target location information is able to be generated with a high degree of precision by using of HMD as a passive sensor.

Computation Algorithm for Launch Acceptability Region of Air-to-Surface Missiles (공대지 유도탄의 발사유효범위(LAR) 산출 알고리듬)

  • Park, Sang-Sup;Hong, Ju-Hyeon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.910-919
    • /
    • 2015
  • A weapon control algorithm equipped on a fighter is closely related to the mission accomplishment and fighter survivability during the engagement. In the case of a air-to-surface missile, the weapon control algorithm typically provides a pilot the target shoot-down possible region known as launch acceptability region(LAR) in the multi function display(MFD). LAR is produced by the range table(RT) through computation of an engagement range. In this paper, the operation system of AGM-84 and AGM-88 air-to-surface missiles is introduced. And the engagement range computation and LAR algorithm based on the real-time pseudo 6-DOF simulation are proposed. In order to verify the performance of the algorithm, numerical engagement simulations of air-to-surface missiles to produce LAR have been done.

Implementation of JDAM virtual training function using machine learning

  • You, Eun-Kyung;Bae, Chan-Gyu;Kim, Hyeock-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.9-16
    • /
    • 2020
  • The TA-50 aircraft is conducting simulated training on various situations, including air-to-air and air-to-ground fire training, in preparation for air warfare. It is also used for pilot training before actual deployment. However, the TA-50 does not have the ability to operate smart weapon forces, limiting training. Therefore, the purpose of this study is to implement the TA-50 aircraft to enable virtual training of one of the smart weapons, the Point Direct Attack Munition (JDAM). First, JDAM functions implemented in FA-50 aircraft, a model similar to TA-50 aircraft, were analyzed. In addition, since functions implemented in FA-50 aircraft cannot be directly utilized by source code, algorithms were extracted using machine learning techniques(TensorFlow). The implementation of this function is expected to enable realistic training without actually having to be armed. Finally, based on the results of this study, we would like to propose ways to supplement the limitations of the research so that it can be implemented in the same way as it is.

A Study on Improvement of Roll Autopilot System (가로축 자동비행시스템 개선에 관한 연구)

  • Kim, Chong-Sup;Koh, Gi-Oak;Ji, Chang-Ho;Cho, In-Je;Lee, Dong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.706-711
    • /
    • 2015
  • The fighter aircraft uses several different loading configurations for air-to-surface and air-to-air combat missions. To maintain wings-level flight with an asymmetric weapon configuration, a pilot controls a roll trim system. However, it is difficult to apply an accurate roll trim input for wings-level flight in the actual flight under disturbance. The inaccurate roll trim input degrades the performance of the roll autopilot system. In this paper, to solve this problem, an integrator was additionally designed in the command part of the roll autopilot system. The initial transient response was improved by scheduling the limiter to restrict the roll attitude error. As a result of the evaluation of the simulation for the designed flight control law, the roll attitude following performance was found to be improved in the autopilot system operation under the inaccurate roll trim condition.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration (비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim, Chong-Sup;Bae, Myung-Whan;Hwang, Byung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.106-112
    • /
    • 2005
  • Modern versions of supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. These various aircraft loading conditions could result in asymmetric configurations to the aircraft once delivered. These asymmetric configurations could result in decreased handling qualities for the pilot maneuvering, stability, control issues and aerodynamic performance of the aircraft. In order to eliminate or decrease these adverse impacts on the pilot's ability, development of T-50 flight control law attempts to control the aircraft in both longitudinal and lateral-directional axes. Especially, the design of the lateral-directional roll axis control laws, utilizing a simple roll rate feedback structure and gains such as F-16, is developed for the T-50 aircraft to meet the aircraft's design requirements. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver.

Tests of a Guidance Kit for Air-to-Surface Bomb (공대지 폭탄용 유도키트 시험)

  • Lee, Inwon;Lee, Kidu;Park, Youngkuen;Lim, Sangsoo;Baek, Seungwoock;Lee, Daeyearl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.314-318
    • /
    • 2013
  • Tests and evaluations following the U.S. MIL-HDBK/STANDARD were successfully conducted to assure the performance of the air-to-surface guidance kit which was developed first in Korea. Various ground tests confirmed the operation capability and reliability of the guidance kit, and flight tests proved very good mid-range gliding performance and accuracy of the gliding bomb which was a general purpose bomb with the guidance kit.

Flight data analysis and visualization program development (비행시험 자료 분석 및 가시화 프로그램 개발)

  • Park, Young-Keun;Lee, Sung-Jin;Lee, Gi-Doo;Lim, Sang-Soo;Lee, In-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.263-269
    • /
    • 2014
  • Flight test data visualization functions can improve an understanding of flight test results, test procedures, and the performance of a flight vehicle after flight tests. FlyingView was developed for researchers to analyse flight test data in a 3D virtual environment. It also can display X-Y plots using flight test data. It was developed and applied to flight tests of an air-to-ground weapon system of ADD. This paper describes the capabilities of FlyingView.