• Title/Summary/Keyword: 공기 순환률

Search Result 29, Processing Time 0.031 seconds

Study on Emission Reduction with Injection Strategy and Exhaust-Gas Recirculation in Gasoline Direct Injection Engine (직접분사식 가솔린 엔진의 분사전략 변경 및 EGR 적용을 통한 배기저감에 관한 연구)

  • Park, Cheol-Woong;Kim, Hong-Suk;Woo, Se-Jong;Kim, Yong-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.335-342
    • /
    • 2012
  • Nowadays, automobile manufacturers are focusing on the reduction of exhaust-gas emissions because of the harmful effects on humans and the environment, such as global warming by greenhouse gases. Gasoline direct injection (GDI) combustion is a promising technology that can improve fuel economy significantly compared to conventional port fuel injection (PFI) gasoline engines. In the present study, ultra-lean combustion with an excess air ratio of over 2.0 is realized with a spray-guided-type GDI combustion system, so that the fuel consumption is improved by about 13%. The level of exhaust-gas emissions and the operation performance with the multiple injection strategy and exhaust-gas recirculation (EGR) are examined in comparison with the emission regulations and from the point of view of commercialization.

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part II. Analysis of NOx formation mechanism (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part II. NOx 생성기구 분석)

  • Cho, Seo-Hee;Kim, Gyeong-Mo;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.39-47
    • /
    • 2020
  • Flue gas recirculation(FGR) is an effective combustion technique for reducing nitrogen oxides(NOx) and is applied in various fields of low-pollution combustion. Continuing the previous study, a numerical analysis was conducted to identify changes of flame characteristics and NOx formation mechanism with applying FGR technique in CH4/air premixed counterflow flames. NOx emitted was divided into four main reaction paths(thermal NO, prompt NO, N2H and N2O), showing relatively the production rate of NO with the recirculation ratio. As a result, thermal NO contributed greatly to the overall NO whereas the effect of N2H was minimal. In addition, emission index of NO was compared as the recirculation ratio increased by modifying the UC San Diego mechanism to examine the contribution of thermal NO.

Separation of Sulfur Dioxide by Circulatory Porous Polymer Membrane Contactor (순환식 고분자 분리막 접촉기를 이용한 이산화황 분리)

  • Lee, Yong-Taek;Jeon, Hyun-Soo;Ahn, Hyo-Seong;Song, In-Ho;Jeong, Heon-Kyu;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.302-310
    • /
    • 2007
  • The effects of various system parameter on the absorption of sulfur dioxide into the absorbent liquid were investigated in a circulatory porous polymer membrane contactor. A feed gas and an absorbent used in the study were the gas mixture of air and $SO_2$ and the $Na_2SO_3$ aqueous solution, respectively. The separation of sulfur dioxide was measured in terms of the concentration of $Na_2SO_3$ absorbent, the concentration of sulfur dioxide, the feed flow rate, the absorbent velocity and the different membrane material. As the concentration of absorbent increased from 0.05 to 0.2 M, the removal efficiency increased from 74 to 100%. By increasing the concentration of sulfur dioxide from 700 to 2,500 ppm, the removal efficiency decreased from 100 to 75%. Also as the absorbent velocity increased from 2.5 to 15 mL/min, the removal efficiency increased from 85 to 100%. As the porosity of the membrane increased, the removal efficiency increased.

The Durability of the Concrete Using Bottom Ash as Fine Aggregate (바텀애시를 잔골재로 사용한 콘크리트의 내구성능에 관한 연구)

  • Park, Seung-Ho;Lee, Jeong-Bae;Kim, Seong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.349-355
    • /
    • 2016
  • This study is about the reuse of bottom ash, which is released as a necessity in thermal power plant. In general, coal-ash are classified as fly-ash, bottom-ash, cinder-ash. Of these, a large amount of fly ash is being recycled as cement substitutes. While, recycling rates of bottom ash are the lowest due to its porosity and high absorption. In this study, the durability of the concrete using bottom ash as a concrete fine aggregate was evaluated. The using level of the bottom ash ranges to step-by-step from 0% to 30%. According to the result of the durability test, regardless of the presence of the bottom ash, freeze-thaw durability could be secured by air entrainment. In case of the resistance to chloride ions penetration, the length change, and the effects on heavy metals, the replacement of bottom ash as fine aggregate was not critical. Although carbonation penetration was higher as the replacement level of bottom ash increased, the experiment showed that it could be possible to use bottom ash as concrete fine aggregate with proper mix design.

Characterization of Concrete Composites with Mixed Plastic Waste Aggregates (복합 폐플라스틱 골재 치환 콘크리트의 기초 물성 평가)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.317-324
    • /
    • 2020
  • Plastic wastes generated from domestic waste are separated by mixed discharge with foreign substances, and the cost of the separation and screening process increases, so recycling is relatively low. In this study, as a fundamental study for recycling mixed plastic wastes generated from domestic waste into concrete aggregates, changes in concrete properties according to the plastic waste types and the substitution rate were evaluated experimentally. The mixed plastic waste aggregate(MPWA) was found to have a lower density and a higher absorption rate compared to the coarse aggregate with good particle size distribution. On the other hand, the single plastic waste aggregate(SPWA) was composed of particles of uniform size, and both the density and the absorption rate were lower than that of the fin e aggregate. It was found that the MPWA substitution concrete did not cause a material separation phenomenon due to a relatively good particle size distribution even with the largest amount of plastic waste substitution, and the amount of air flow increased little. The compressive strength and flexural strength of the PWA substitution concrete decreased as the amount of substitution of the PWA increased due to the low strength of the PWA, the suppression of the cement hydration reaction due to hydrophobicity, and the low adhesion between the PWA and the cement paste. It was found that the degree of deterioration in compressive strength and flexural strength of concrete substituted with MPWA having good particle size distribution was relatively small.

The Waveform and Spectrum analysis of Tursiops truncatus (Bottlenose Dolphin) Sonar Signals on the Show at the Aquarium (쇼 학습시 병코돌고래 명음의 주파수 스펙트럼 분석)

  • 윤분도;신형일;이장욱;황두진;박태건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.117-125
    • /
    • 2000
  • The waveform and spectrum analysis of Tursiops truncatus(bottlenose dolphin) sonar signals were carried out on the basis of data collected during the dolphin show at the aquarium of Cheju Pacificland from October 1998 to February 1999. When greeting to audience, the pulse width, peak frequency and spectrum level from the five dolphins'sonar signals were 3.0ms, 4.54kHz and 125.6dB, respectively. At the time of warm-up just before the show, their figures were 5.0㎳, 5.24kHz and 127.0dB, respectively. During the performance of dolphins, with singing, peak frequency ranged 3.28∼5.78kHz and spectrum level ranged 137.0∼142.0dB. With playing ring, pulse width, peak frequency and spectrum level were 7.0㎳, 2.54kHz and 135.9dB, and when playing the ball, the values were 9.0㎳, 2.78kHz and 135.2dB, respectively. The values determined from the five dolphins during jump-up out of water were : pulse width 2.0㎳, peak frequency 4.50kHz and spectrum level 126.8dB. When they responded to trainer's instructions, the values were 2.25㎳, 248kHz and 148.7dB, respectively, and greeting to audience, the peak frequency and spectrum level were 5.84kHz and 122.5dB. During swimming under water, peak frequency and spectrum level were determined to be 10.10kHz and 126.8dB. It was found that there exited close consistencies in pulse width, frequency distribution and spectrum level between whistle sounds and dolphin's sonar signals. Accordingly, the dolphins can be easily trained by using whistle sound based on the results obtained from the waveform and spectrum of the dolphin's sonar signals.

  • PDF

Mass Production of Artificial Seedlings in Hard Clam Meretrix petechialis (Lamarck) (말백합 Meretrix petechialis (Lamarck) 인공종묘의 대량생산)

  • Kim, Tae-Ik;Ko, Chang Sun;Hur, Young Baek;Jin, Young Guk;Lee, Jeong Yong;Chang, Young Jin
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.313-319
    • /
    • 2012
  • Mass production method on artificial seedling production of hard clam Meretrix petechialis was developed indoor culture system. Spawning of adult clam (SL $65.8{\pm}8.4mm$) was induced using the combined method of air exposure and water temperature raising. The fertilized eggs were developed to D-shaped larvae after 17.7 hours at $27^{\circ}C$ and hatching rate was 6.1%. Shell length (SL) of D-shaped larvae was measured to be $131.4{\pm}2.6{\mu}m$ and thereafter the larvae grew to the settled spats with SL $190.2{\pm}7.5{\mu}m$ in 4 days. Estimated survival rate of settled spats was 48.1%. Spat collection on 130,000 spats with SL $0.19{\pm}0.01mm$ performed conducted by sand bottom circulation filtering method. Collected spats grew up to $3.1{\pm}0.8mm$ in 46 days, $6.6{\pm}1.8mm$ in 87 days, and $10.5{\pm}0.9mm$ in 114 days. The relative growth between SL and shell height (SH) was calculated to be SH = 0.8501SL + 0.0196 ($R^2=0.9987$) during the whole spat period. During spats rearing, they were suffered from one time of mass mortality at SL 3.1 mm, but 51,000 spats were finally survived with the rate of 39.2% at 114 days of spat rearing in indoor tank system.

Mechanical Properties of Recycled Powder mixing Concrete (재생미분말을 혼입한 콘크리트의 역학적 특성)

  • Lee, Seung-Hwan;Jung, Dae-Jin;Choi, Ik-Chang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.769-772
    • /
    • 2008
  • The problem of disposing construction waste materials has become a national and social problem. Recycled powder generated in the process of making aggregate, and the recycled powder is land-filled in its entirety. Results of toxicity testing of recycled power show that it contains base-pair substituent mutagenicity. As recycled powder is disposed of as landfill, it can cause secondary contamination such as soil and underground water contamination. There has been very little research made on recycled powder. This study has examined the utilization of concrete mixture by using recycled powder in a mixture instead of cement and compared and analyzed the characteristics of dynamics and workability. This study has examined the application of recycled powder in concrete. Depending on the replacement rate and workability, test piece was manufactured using different mixing rate by CP, WCP, PCP. The CP was used to examine the physical property of concrete and characteristics its dynamics. The letters W of WCP and P of PCP are the initials of water and mixture. They were made using the standard mixing ratiosemphasizing the workability to determine the characteristic of dynamics of concrete based on the mixing ratio of recycled powder. With the increase in the replacement rate, CP had very little change in the strength. But with the decline of slump, the workability was not good. The result of manufacturing WCP and PCP using the standard mixing ratio showed that WCP had a drop in strength compared to the plain. PCP had almost the same value as the plain only when the replacement rate was 10%. When it was higher than that, a reduction in strength was observed.

  • PDF

Remediation of Sediments using Micro-bubble (미세기포를 이용한 퇴적물 정화)

  • Kang, Sang Yul;Kim, Hyoung Jun;Kim, Tschung Il;Park, Hyun Ju;Na, Choon Ki;Han, Moo Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.420-427
    • /
    • 2016
  • This study was conducted on the sediment remediation using micro-bubble to remove fine particles. For this study, characteristics of contamination and release in sediment were analyzed. And then, the characteristics of bubbles on removal efficiency was investigated at various operation conditions. In particle size distribution of the sediment used for the study, the proportion of clay and silt (<0.075 mm) was about 7.7%, sand (0.075~4.75 mm) was about 67.8%, and gravel (${\geq}4.75$) was 24.5%. Total nitrogen (TN) and total phosphorus (TP) of the sediment were 2,790~3,260, 261~311 mg/kg respectively. Ignition loss and water content were 4.1~9.6, 32.9~53.2% respectively. In analysis of removal efficiency according to operation conditions of micro-bubble, it was the highest when operation condition is pressure 6 atm, pressurized water ratio 30%, and coagulant dosage 15 ppm. At the time, the sediment's removal efficiency was 19.9%. Accordingly removal efficiency of TN and TP were 21.4, 22.6% respectively. Finally a research was found that fine particles in sediment were almost removed by micro-bubble, which led to decrease nutrients' release at about 20.1~64.3% in comparison to sediment including lots of fine particles.