• Title/Summary/Keyword: 공기의 저항

Search Result 496, Processing Time 0.038 seconds

Liquid Velocity and Local Fouling in Coagulation-submerged Microfiltration Module for Drinking Water Treatment (정수처리를 위한 응집-침지식 정밀여과 모듈의 유체유속 및 국부오염)

  • Choi, Youngkeun;Kim, Hyun-Chul;Noh, Soohong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.268-275
    • /
    • 2015
  • Effects of aeration intensity on local fouling were investigated in submerged membrane modules. Higher liquid velocities were observed at the section with the lower fiber packing density. The liquid velocity is increased with increasing the gas-liquid injection factor. The high shear stress coincided with the high liquid velocity. The shear stress increases with the increasing of gas-liquid injection factor and the liquid velocity improves with the increasing of gas-liquid injection factor. Irreversible fouling resistance ($R_{ir}$) of the fiber position is significant in a local region of high suction pressure near the suction point of the fiber (position 1). The ratio of $R_{ir}/R_m$ and $R_{ir}/R_r$ of position 1 was highest compared to the position 2 and 3. Irreversible fouling resistances results confirmed the preferential deposition of foulants near the suction part of the fiber where the local suction pressure is the highest and correspondingly, more particles are accumulated to the membrane surface. The effects of local fouling along the fiber length are significant factors to optimize the design of submerged modules.

A Study on the Comparison of the Rolling and Resistance Performance for the Stepped-Hull with attached a Stern-body by using Sea Model-Test (실 해상모형시험을 이용한 선미 보조동체 장착 Stepped hull 선형의 횡동요 및 저항특성 비교 연구)

  • Jo, Hyo-Jae;Sohn, Kyoung-Ho;Park, Chung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.813-818
    • /
    • 2007
  • There are the C.W.C and Towing Tank to the model-test equipments of the boat. A model testing of the high speed boat have a difficult in the performance verification because of very a small the scale-ratio of the ship-model and restricted by flow-velocity of the C.W.C and X-carriage velocity of the T.T. In general, the stepped hull boat is a high of fuel-efficiency because of the resistance reduction by a small wetted surface-area in correspond without stepped-hull boat. But It have a tendency to be bad the rolling performance by reduced stern wetted-area In this paper, the high speed stepped planning-boats with & without attached a stern body were performed to compare the effect of resistance and rolling performance by using sea model-test method.

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance (기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 2021
  • Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.

Basic Properties of Latex-Modified Concrete Using Fly-ash (플라이애쉬를 이용한 라텍스개질 콘크리즈의 기초물성 연구)

  • Hong, Chang-Woo;Jeong, won-Kyong;Kim, Kyong-jin;Yun, Kyong-ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.205-211
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of fly-ash on strength development and durability of latex-modified concrete (LMC) and ordinary portland cement concrete (OPC). Main experimental variables were latex contents (0%, 10%, 15%) and fly-ash content (0, 10%, 20%, 30%). Air content and slump tests were performed to check the basic properties of fresh concretes, and compressive strength, flexural strength, rapid chloride ion permeability and chemical resistance were measured to analyze the basic properties of hardened concretes. The test results showed that air contents of LMC with fly ash decreased as fly-ash contents increased from 0% to 30%. Compressive and flexural strength developments of LMC with fly ash were quite similar to those of LMC without fly ash. However, the long-term flexural strength development of LMC with fly ash after 90 days were bigger than that of LMC without fly ash. Chloride ion permeability and chemical resistance decreased rapidly as the content of fly ash increased. Thus, fly ash could be used at LMC in order to reduce water permeability.

Fabrification of Segmented Flat-Tubular SOFC cell (Segmented 평관형 SOFC 셀 제조)

  • Park, Sung-Tae;Choi, Byung-Hyun;Ji, Mi-Jung;Choi, Heon-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.137.1-137.1
    • /
    • 2010
  • SOFC cell 하나의 전위차는 약1.1V이기 때문에 발전용으로 사용하기 위해서는 수많은 단전지를 직렬로 연결하는 구조가 필요하다. 이러한 stack의 디자인에서 발생하는 문제를 획기적으로 개선한 형태가 하나의 지지체에 셀을 직렬로 연결함으로 전극의 선폭 및 단위 셀 간의 간격이 기존 평판형, 원통형에 비해 대폭 축소되어 전극 및 연결재의 저항손실을 최소화할 수 있는 Segmented형 SOFC이다. Segmented SOFC에 적용하기 위한 세라믹 다공성 지지체는 연료와 공기에서의 화학적 안정성, 셀의 구성소재와 반응이 없으며 열팽창계수가 유사해야하는 특성을 가져야하는데 그 중에서도 지지체로써 적절한 기계적 강도와 높은 가스투과도가 요구되어진다. 본 연구에서는 고온에서 안정한 Spinel의 MgAl2O4를 주성분으로 하는 다공성 지지체를 압출 성형하여 평관형으로 제조하였으며 활성탄을 기공형성제로 사용하여 연료의 공급이 원활하도록 약 30%의 기공율을 가지는 다공성 세라믹 지지체를 제조하였다. 제조된 세라믹 지지체에 연료극(NiO/YSZ), 전해질(TZ8Y), 공기극(LSM)을 코팅하여 실제 SOFC에 적용이 가능함을 확인하였다.

  • PDF

A large scale model test to investigate the pressure drop and heat transer characteristics in the air side of two-row heat exchanger (2열 휜 튜브 열교환기의 공기측 압력강하 및 열전달 특성을 고찰하기 위한 확대 모형실험)

  • Gang, Hui-Chan;Kim, Mu-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.113-124
    • /
    • 1997
  • This work is performed to investigate the pressure drop and heat transfer characteristics in the air side of finned-tube heat exchanger for air conditioner. Experimental apparatus and method are described to simulate the heat exchanger performance by using the three times enlarged model. The pressure drop and heat transfer coefficient were measured and compared for the heat exchangers with a plane fin and a commercial strip fin. The measured data for the strip fin agree well with those of prototype within a few percentages. For the plane fin, the measured data had similar trend to Gray & Webb's correlation at high air velocity, however a new correlation is needed to give more accurate prediction at low air velocity. It is found that most heat was transferred around the front row of the two-row heat exchanger, and the ratio of thermal load at the front tube row was increased for decreasing air velocity.

Air Flow Analysis due to the Configuration of Car Body Radiator Grill (차체 라디에이터그릴의 형상에 따른 공기 유동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.21-27
    • /
    • 2013
  • This study is investigated on flow analysis according to grill configuration of radiator. The stream of flow which pass through radiator grill in car body and the contour of pressure distribution are estimated by the basis. As the magnitude of resistance force which flow affects the car body is investigated so that the power reduction can be reduced. As the pressure inside radiator grill is assessed, more efficiency can be investigated in order that the flow rate inside car body can be increased. Model 2 has the most air resistance and model 1 has the least among model 1, 2 and 3. Model 1 has the most air flow rate at inside. There are model 3 and 2 simulated according to flow rate. As the curved surface at radiator grill configuration increases in number, air flow rate becomes distributed uniformly. By considering the effect on air resistance and air flow rate at radiator grill, model 3 becomes the most effective configuration.

Study of $Pr_{0.3}Sr_{0.7}CO_{x}Fe_{(1-x)}O_{3-\delta}$ (x=0, 0.3, 0.5, 0.7, 1) as the cathode materials for intermediate temperature SOFC (${\cdot}$저온형 고체 산화물 연료전지의 공기극 물질로 사용되는 $Pr_{0.3}Sr_{0.7}CO_{x}Fe_{(1-x)}O_{3-\delta}$ (x=0, 0.3, 0.5, 0.7, 1) 에 관한 연구)

  • Park, Kwang-Jin;Kim, Jung-Hyun;Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.125-128
    • /
    • 2007
  • The influence of Co substitution in B-site at perovskite PSCF($Pr_{0.3}Sr_{0.7}CO_{x}Fe_{(1-x)}O_{3}$) was investigated in this study. The PSCF series exhibits excellent MIEC(mixed ionic electronic conductor) properties. ASR(area specific resistance) of PSCF3737 was 0.137 ${\Omega}{\cdot}cm^{2}$ at $700^{\circ}C$. The activation energy of PSCF3737 was also lower than other compositions of PSCF. ASR of PSCF3737 was analysed as two parts at different part of frequency region. Responses at middle frequency part (${\sim}10^2$ Hz) were concerned with oxygen reduction reaction and those at low frequency part (${\sim}10^{-1}$ Hz) were related with oxygen diffusion.

  • PDF

Characteristics of Driving Efficiency and Bearing Capacity for Long Steel Pipe Pile Method without Welding (무용접 장대강관말뚝 공법의 항타 및 지지력 특성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.235-241
    • /
    • 2000
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance resulting from time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to solve the existing problems, and calibration chamber tests were performed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new method increased bearing capacity, and decreased the installation cost and period for long steel pipe piles compared with existing methods.

  • PDF

A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air (건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구)

  • 강재훈;송준엽;박종권;노승국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF