• Title/Summary/Keyword: 공극 형성

Search Result 251, Processing Time 0.027 seconds

Effect of Green Manure Hairy vetch on Rice Growth and Saving of Irrigation Water (녹비작물 헤어리베치가 벼 생육 및 관개량 절약에 미치는 효과)

  • Jeon, Weon-Tai;Hur, Seung-Oh;Seong, Ki-Yeong;Oh, In-Seok;Kim, Min-Tae;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • Green manure crops are primarily used to reduce the application of chemical fertilizers. In this study, a two-year field experiment was conducted to evaluate the effects of green manure hairy vetch on rice growth and saving of irrigation water. This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) from 2008 to 2009 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Hairy vetch as a green manure crop was incorporated in soil for rice cultivation. Chemical fertilizers had not been applied to hairy vetch plot. Treatments included once irrigation (OI) per week and conventional irrigation (CI). In 2008, the water use efficiency of OI increased by 46% compared to CI by hairy vetch application during rice cultivation season (water treatments were started 38 days after rice transplanting). In 2009, the water use efficiency of OI increased by 61.3% compared to CI by hairy vetch application during rice cultivation season (water treatments were started 30 days after rice transplanting). Soil physical properties such as bulk density, soil porosity ratio and glomalin contents were improved by the incorporation of hairy vetch. The rice yield of OI water management was not significantly different from those of CI water management by hairy vetch application both years. These results suggest that the OI water management with hairy vetch incorporated in soil for rice cultivation can be used in rice fields to reduce the amount of irrigation water and chemical fertilizer.

Thermal Decomposition of Arsenopyrite by Microwave Heating and the Effect of Removal Arsenic with Wet-magnetic separation (마이크로웨이브 가열에 의한 황비철석의 열분해와 습식-자력선별에 의한 비소 제거 효과)

  • On, Hyun-Sung;Kim, Hyun-Soo;Myung, Eun-Ji;Lim, Dae-Hack;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.103-112
    • /
    • 2017
  • In order to transform arsenopyrite into pyrrhotite and to decrease As content by less than 2,000 mg/kg, pulp sample and non-magnetic pulp sample were heated in a microwave oven at different heating times and were separated through wet-magnetic separation. As the microwave heating time increased, the phase of pyrrhotite was extended to become arsenopyrite entirely. The melting pores and micro-cracks occurred on the pyrrhotite due to hot spot phenomenon with microwave heating. The heated raw pulp sample (As content : 19,970.13 mg/kg) and non-magnetic pulp sample (As content : 19,970.13 mg/kg) which were heated in a microwave oven for 10 minutes were separated through wet-magnetic separation and magnetic fraction containing less than 2,000 mg/kg of As content was recovered only from the heated sample of magnetic separation. It was discovered that for the sulfide complex ore with As penalty imposed on, if microwave heating and wet-magnetic separation are effectively utilized, magnetic fraction. We expect to be able to obtain ore minerals with an arsenic content below the penalty charge.

The Influence of Al2O3 on the Properties of Alkali-Activated Slag Cement (알칼리 활성화 슬래그 시멘트의 특성에 미치는 Al2O3의 영향)

  • Kim, Tae-Wan;Kang, Choong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.205-212
    • /
    • 2016
  • This research investigates the influence of ground granulated blast furnace slag (GGBFS) composition on the alkali-activated slag cement (AASC). Aluminum oxide ($Al_2O_3$) was added to GGBFS binder between 2% and 16% by weight. The alkaline activators KOH (potassium hydroxide) was used and the water to binder ratio of 0.50. The strength development results indicate that increasing the amount of $Al_2O_3$ enhanced hydration. The 2M KOH + 16% $Al_2O_3$ and 4M KOH + 16% $Al_2O_3$ specimens had the highest strength, with an average of 30.8 MPa and 45.2 MPa, after curing for 28days. The strength at 28days of 2M KOH + 16% $Al_2O_3$ was 46% higher than that of 2M KOH (without $Al_2O_3$). Also, the strength at 28days of 4M KOH + 16% $Al_2O_3$ was 44% higher than that of 4M KOH (without $Al_2O_3$). Increase the $Al_2O_3$ contents of the binder results in the strength development at all curing ages. The incorporation of AASC tended to increases the ultrasonic pulse velocity (UPV) due to the similar effects of strength, but increasing the amount of $Al_2O_3$ adversely decreases the water absorption and porosity. Higher addition of $Al_2O_3$ in the specimens increases the Al/Ca and Al/Si in the hydrated products. SEM and EDX analyses show that the formation of much denser microstructures with $Al_2O_3$ addition.

Effect of Internal Curing by Super-Absorbent Polymer (SAP) on Hydration, Autogenous Shrinkage, Durability and Mechanical Characteristics of Ultra-High Performance Concrete (UHPC) (고흡수성 수지(SAP)를 이용한 내부양생이 초고성능 콘크리트(UHPC)의 수화반응, 자기수축, 내구성 및 역학적 특성에 미치는 영향)

  • Kang, Sung-Hoon;Moon, Juhyuk;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.317-328
    • /
    • 2016
  • This research intends to understand the impact of super-absorbent polymer (SAP) as an internal curing agent in Ultra-High Performance Concrete (UHPC). Two different types of SAPs of acrylic acid (SAP_AA) and acrylic acid-co-acrylamide (SAP_AM) were examined with UHPC formulation. Isothermal calorimetry and x-ray diffraction experiments revealed the impact of polymers with the different chemical bonds on cement hydration. To test its feasibility as a shrinkage reducing admixture for UHPC, a series of experiments including flowability, compressive strength, rapid chloride permeability and autogenous shrinkage profile was performed. While both SAPs showed a reduction in autogenous shrinkage, it has been concluded that the SAP size and chemical form significantly affect the performance as an internal curing agent in UHPC by controlling cement hydration and porosity modification. Between the tested SAPs, SAP_AM which absorbs more water in UHPC than SAP_AA, shows better mechanical and durability performance.

Benthic Fluxes of Ammonia and Lead in Lake Shihwa (시화호에서 암모니아와 납의 저층용출)

  • Han, Myong-Woo;Park, Yong-Chul;Huh, Sung-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 1997
  • A 12-cm long sediment core was collected from a station in Lake Shihwa where high salinity-anoxic deep water is isolated from low salinity-oxic surface water by a strong halocline barrier. Unprecedented concentrations of porewater ammonia and lead are encountered: at 9 cm sediment depth ammonia builds up to 1420 ${\mu}M$ and at 3 cm lead to 1348 nM. As they are stable in anoxic condition, high concentrations of ammonia and lead suggest a development of notorious anoxic condition in the benthic environment of the lake. The degree of pollution of the deep water is likely to be directly proportional to the magnitude of benthic flux, because the deep water is isolated from the surface water by the halocline. Apparent coincidence of the ammonia residence time in the deep water with the elapsing time after the completion of the artificial lake construction, as about three years, suggests that the deep water pollution is being progressed entirely by benthic flux at least with respect to ammonia. The residence time for lead is such a short 20 days that it suggests a rapid return of the bottom water lead, which is originated from porewater by benthic flux, back to sediments probably as metal sulfide phases. The speculation on the return of lead as sulfide phases is likely to be supported by high concentration of hydrogen sulfide in the deep water and by high sinking rate of non-organic particles in Lake Shihwa.

  • PDF

Dynamics of Total Phosphorus and Attached Bacteria in a Porous Medium Concentrating Nutrients from Low-Nutrient Water (저농도 영양염류를 농축하는 여재에서 총인과 부착세균의 변화)

  • Kim, Ju-Young;Nam, Jong-Hyun;Jung, Da-Woon;Cho, Ahn-Na;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • A nutrient-concentrating system was operated to retrieve total phosphorus efficiently from a non-point pollution source. Attached bacteria were expected to play an important role in the system. Phosphorous was concentrated by formation of bacterial biofilms on rubberized coconut fiber media of the system. While concentration of total phosphorus (TP) ranged merely 0.12~0.35 mg/L in the stream water, TP levels in pore water and the media were 0.45~0.86 mg/L and 40.91~242.71 mg/kg, respectively. Total bacterial number (TBN) ranged $0.3\sim2.3\times10^6$ cells/ml in stream water, $0.4\sim4.4\times10^6$ cells/ml in pore water and $0.8\sim1.9\times10^9$ cells/g in media. There was a close correlation between TP and TBN. Based on band profiles in DGGE analyses, bacterial communities in the media were different from that in the stream water. Clostridium spp. were abundant in the stream water while Aquabacterium spp. were dominant species in early stages of biofilm formation in the media. The genera predominant in matured biofilms of the media were Clostridium and Enterococcus.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora S. et Z) Powder (I) - Elemental Analysis, SEM, N2 Adsorption-desorption- (가열처리 및 탄화처리 소나무재(Pinus densiflora) 목분의 구조 및 물리·화학적 특성(I) - 원소 분석, SEM, 질소 흡착-탈착 실험 -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.44-51
    • /
    • 2008
  • In this study, the effects of carbonization temperature on the physico-chemical properties of Korean red-pine wood (Pinus densiflora S. et Z.) powder charcoal are studied by elemental analysis, nitrogen adsorption-desorption and SEM techniques. The surface structure and physico-chemical properties of the wood charcoal greatly depend on the carbonization temperature and their temperature dependences for sapwood (swd) and heartwood (hwd) are qualitatively analogous. Because of the differences in characteristics such as hardness and composition between heartwood and sapwood, charcoals from heartwood have larger specific surface area and smaller average pore diameter than that from sapwood. Because the decomposition reaction mostly proceeds in the precarbonization stage, the charcoal produced in this stage mainly consists of carbon. The second carbonization reaction is insignificant but still proceeds up to $700^{\circ}C$, and the specific surface area continuously increases. Above $800^{\circ}C$, the surface area is reduced by the pore-filling and narrowing effects and especially above $900^{\circ}C$, new carbon phase with hexagonal column rooted into the pore is formed. The nitrogen adsorption-desorption isotherm of the charcoal is classified as type I and its hysteresis loop was as type H4.

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.

Applying the New Technology for Making Pontic Ridge Lap in Posterior Bridge Restoration (대체 신기법을 적용한 구치부 교의치 pontic ridge lap 제작방법)

  • Kim, Wook-Tae
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.308-316
    • /
    • 2013
  • The purpose of this study is to investigate the production method of posterior bridges pontic ridge lap type which prevents the infection in bridge pontic base and is able to cleanse itself, in the process of producing final prothesis that maintains healthy mucous membrane of oral cavity and interproximal papilla, minimizing diastema, is aesthetic and has no effect on pronunciation. New technology is applied to make optimal pontic base which prevent inflammation and clean itself and its products were clinically evaluated in 10 places of dental clinics in busan and gyeongnam. The making of posterior 3 unit bridge pontic base, it was presented as the new technology of forming ridge lab type and to carry out clinical validation, existing conventional method and the new technology were compared. Pontic base made with the existing conventional method cause infection and other periodontal disease by 96% but the pontic base made with the new technology cause infection and other periodontal disease by 3%. Remains of food cause infection and other periodontal disease 100% by the existing conventional method and 91% by the new technology, showing a distinct difference. However, after a gargle, the new technology had low 13%. Additionally, the pontic base made with the existing conventional method showed 71% of chance, the new technology method showed 8% of chance in terms of self-cleansing.

Synthesization and Characterization of Pitch-based Activated Carbon Fiber for Indoor Radon Removal (실내 라돈가스 제거를 위한 Pitch계 활성탄소섬유 제조 및 특성연구)

  • Gwak, Dae-Cheol;Choi, Sang-Sun;Lee, Joon-Huyk;Lee, Soon-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.207-218
    • /
    • 2017
  • In this study, pitch-based activated carbon fibers (ACFs) were modified with pyrolysis fuel oil (PFO). Carbonized ACF samples were activated at $850^{\circ}C$, $880^{\circ}C$ and $900^{\circ}C$. A scanning electron microscope (SEM) and a BET surface area apparatus were employed to evaluate the indoor radon removal of each sample. Among three samples, the BET surface area and micropore area of ACF880 recorded the highest value with $1,420m^2{\cdot}g^{-1}$ and $1,270m^2{\cdot}g^{-1}$. Moreover, ACF880 had the lowest external surface area and BJH adsorption cumulative surface area of pores with $151m^2{\cdot}g^{-1}$ and $35.5m^2{\cdot}g^{-1}$. This indicates that satisfactory surface area depends on the appropriate temperature. With the above scope, ACF880 also achieved the highest radon absorption rate and speed in comparison to other samples. Therefore, we suggest that the optimum activation temperature for PFO containing ACFs is $880^{\circ}C$ for effective indoor radon adsorption.