• Title/Summary/Keyword: 공극크기

Search Result 315, Processing Time 0.027 seconds

A Study on the Properties of Electric Arc-Furnace Steelmaking Dusts for Stabilization Processing (안정화 처리를 위한 전기로 제강분진의 물성)

  • 현종영;조동성
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.13-18
    • /
    • 1998
  • This study was carried out to understand the properties of the E.A.F. steel-making dusts for stabilization processing. The properties are related to mincral composition, shape, particle size, magnetism, density, porosity and leaching characteristic. the dust particles, the size of which ranges from sub-micron to tens-micron, were mainly spherical like balls that were agglomerated each other: the large particles were generally Fe-rich and the small particles were spherical like balls that were agglomerated each other: the large particles were franklinite (ZnFe$_{2}O_{4}$), magnetite (Fe$_{3}O_{4}$) and zincite (ZnO) by XRD analysis. When the dusts were sieved by a wet process, the particle fraction over 200 mesh had 1.5 wt.% with magnetite and quartz. The particles in the size range of 200-500 mesh consisted of magnetite, franklinite. The 82 wt.% of the steel-making dusts were occupied by the particles finer than 500 mesh and contained franklinite and zincite as main mineralogical compositions. When the dusts of around 78% porosity compressed under the load of approximately 1 KPa, the porosity decreased to 68% and to 535 under around 13 KPa. When the E.A.F. dusts were leached according to the Korea standard leaching procedure on the waster, the heavy metals exceeding the leaching criteria were cadmium, lead and mercury.

  • PDF

Characterization of Activated Carbon from Wood by ZnCl2 (염화아연(ZnCl2) 부활법에 의해 제조한 목재 활성탄의 특성)

  • Kwon, Gu-Joong;Kwon, Sung-Min;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • The effect of ratio between chemical activating agent and raw material in the preparation of activated carbons from wood has been studied. Pinus koraiensis wood and zinc chloride ($ZnCl_2$) were used for materials in this study. Mixtures of wood and zinc chloride were heated under nitrogen flow in the temperature ranging from room-temperature to $600^{\circ}C$ for 1 hr using thermogravimetric technique. During heat treatment, activated carbons with various pore size and specific surface properties were obtained. The maximum BET surface area and total pore volume were $1468m^2/g$ and 1.74 cc/g, respectively, at the mixture ratio of 1 (wood powder) to 5 ($ZnCl_2$). It can be concluded that the differences in the properties of the activated carbons were related significantly with the ratio of chemical activating regent.

  • PDF

Characteristics of Asphalt Concrete Mixed with Polyethylene Aggregate (폐비닐 골재 혼합 아스콘의 성질)

  • Kim, Youngchin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.5-11
    • /
    • 2017
  • The 19 mm-sized aggregate was produced by melting vinyl waste (waste polyethylene film) generated from vinyl greenhouses in rural areas. It was mixed with As'cone at various weight ratios, and then insulation effect test, tension test after repeated freezing and thawing, ice pull-out strength test and field density test were conducted for the mixtures. These results demonstrated that as the mixing ratio of polyethylene aggregate increased, the insulation effect increased, due to the many pore spaces that existed in the polyethylene aggregate. After repeatedly freezing and thawing As'cone, the tensile strength significantly increased at 2.5% of the polyethylene aggregate content rather than 0% of polyethylene aggregate content but it also slightly decreased at 5% and 10% of polyethylene aggregate content in comparison to 2.5% of its polyethylene aggregate content. As'cone added with polyethylene aggregate by 2.5% resulted in lower ice pull-out strength than that of normal As'cone. As a result of the porosity test for the samples taken at the site, porosity of the As'cone, which added polyethylene aggregate, was smaller than that of the general As'cone.

Fabrication and Characteristics of Mesophase Pitch-Based Graphite Foams Prepared Using PVA-AAc Solution (PVA-AAc 용액을 사용한 메조페이스 핏치기반 그라파이트 폼의 제조 및 특성)

  • Kim, Ji-Hyun;Lee, Sangmin;Jeong, Euigyung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.706-713
    • /
    • 2015
  • Graphite foams (GFs) were prepared by adding different amounts of mesophase pitch (MP) into polyvinyl alcohol-acrylic acid (PVA-AAc) solution followed by the heat treatment. It was confirmed that the pore diameters of GFs were controlled by the slurry concentration, which was the mesophase content added in polymer solution, and their thermal conductivity and compressive strength were also controlled by porosities of GFs formed at different conditions. The resulting GFs in this study had the highest thermal conductivity of $53.414{\pm}0.002W/mK$ and compressive strength of $1.348{\pm}0.864MPa$ at 0.69 in porosity. The thermal conductivity of MP based GFs increased approximately 23 times higher than that of using isotropic pitch based GFs due to the developed graphitic structure.

Development of Biomimetic Scaffold for Tissue Engineering (조직공학을 위한 생체모사용 스캐폴드 개발)

  • Park, Su-A;Lee, Jun-Hee;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Tissue engineering is a research field for artificial substitutes to improve or replace biological functions. Scaffolds play a important role in tissue engineering. Scaffold porosity and pore size provide adequate space, nutrient transportation and cell penetration throughout the scaffold structure. Scaffold structure is directly related to fabrication methods. This review will introduce the current technique of 3D scaffold fabrication for tissue engineering. The conventional technique for scaffold fabrication includes salt leaching, gas foaming, fiber bonding, phase seperation, melt moulding, and freeze drying. These conventional scaffold fabrication has the limitations of cell penetration and interconnectivity. In this paper, we will present the solid freeform fabrication (SFF) such as stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), and 3D printing (3DP).

Study of Kaolin Particle Migration and Clogging Using a Micromodel (마이크로 모델을 이용한 고령토 입자의 유동 특성 연구)

  • Ha, Minkyu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.37-42
    • /
    • 2019
  • Hydrate dissociation is required to produce methane, which generates both water and methane. Thus, multiphase fluid flow and desalination are expected during methane production, which causes the fine migration and clogging in pores. The goal of this study is to explore the effects of both multiphase fluid flow and desalination on the migration and clogging of kaolin particles as typical fines. The results are as follows : (1) the larger the pore size is, the more mounting the critical clogging concentration is, (2) kaolin particles are more easily clustering and clogging in deionized water than salty water, and (3) the critical clogging concentration of kaolin in multiphase fluid flow is lower than in singlephase fluid flow. Therefore, clustering and clogging of kaolin within pore occur easily due to desalination and multiphase fluid flow when methane is produced from hydrates, and the efficiency of methane production is expected to decrease due to the degradation of permeability coefficient.

Laboratory Test and Field Study of Soft Ground Improvement Effect by Using Various PVDs (실내실험과 현장실험을 통한 다양한 PVD의 연약지반개량효과)

  • Shin, Eun-Chul;Nazarova, Zhanara
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.15-21
    • /
    • 2008
  • The advantages of prefabricated vertical drains over conventional sand drains include their relatively low costs, less disturbance to the soil mass, the easinees of installation, and their flexibility which ensures the integrity of the drains during installation. This study tested the change of discharge capacities with respect to the hydraulic gradients for each lateral pressure. From the test results, as increases the overburden pressure, the clay soil is being consolidated, and also lateral pressure to the PVD specimen is increased. Therefore, the discharge capacity is decreased. The size of opening space in the core of PVDs is proportionally related to the discharge capacity. The numerical analysis was performed with utilizing computer simulation with considering field conditions. The results of numerical analysis are compared well with the field measurements.

  • PDF

Permeability Reduction of Soils by Biomass Injection (미생물 균체의 주입을 통한 토양의 투수계수 감소)

  • 송영우;김건하;구동영
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.273-283
    • /
    • 1999
  • When microorganism is injected into porous medium such as soils, biomass is retained in the pore. Soil pore size and shape are varied from the initial condition as a result of biofilm formation which makes hydraulic conductivity reduced and friction rate between soil aggregates increased. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrate and nutrient. In addition, this research evaluated the applicability of biomass-soil mixture to the field condition as an alternative cover material in landfill by measuring hydraulic conductivity change after repetitive freeze-thaw cycles. Hydraulic conductivity of silty soil decreased by approximately 1/50 after biomass inoculation and cultivation. Biofilm attached on soil aggregates is resistant to acidic or basic condition. After repetitive freeze-thaw cycles, however, hydraulic conductivity increase implies that biomass clogging can be impaired.

  • PDF

Effects on the Inclusion of the Pigment in Performance of Color Asphalt Mixture (안료의 혼입이 유색 아스팔트 혼합물 싱능에 미치는 영향 연구)

  • Park, Tae-Soon;Jeon, Man-Sik
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.181-187
    • /
    • 2008
  • This paper presents the results of the effects on the inclusion of the pigment in the color asphalt mixture. The particle size of the pigment is extremely finer than that of the filler and should be reduced the amount of the filler used. It was found in the present practise that the total weight of 2% of the pigment in the weight of the total aggregate was used during the mix design. The extra inclusion of the pigment in the mixture increased the amount of the filler and affected on the volumetric properties such as void ratio and VMA. It has related with the performance and distress of the pavement and found that the mechanical properties have decreased.

  • PDF

Effect of Added Pluronics on fabrication of Poly(L-lactic acid) Scaffold via Thermally-Induced Phase Separation (상 분리법을 이용한 Poly(L-lactic acid) Scaffold제조에 미치는 Pluronics의 영향)

  • 김고은;김현도;이두성
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.821-828
    • /
    • 2002
  • Regular and highly interconnected macroporous poly(L-lactic acid) (PLLA) scaffolds with pore size of 10∼300 ㎛ were fabricated through thermally induced phase separation of a PLLA-dioxane-water ternary system in the presence of a small amount of Pluronics. Addition of Pluronics to the ternary system raised the cloud-point temperature curve in the order of P-123< F-68< F-127. The Pluronics act as nuclei for the phase separation. This assistance is enhanced with increasing length of the hydrophilic PEO blocks in the Pluronics molecules. Liquid-liquid spinodal phase separation was induced at higher temperatures in the systems containing Pluronics because the spinodal region is raised to higher temperature. The absorption of Pluronics onto the interface stabilizes a macro scale structure and increases the interconnection of pores.