• Title/Summary/Keyword: 공극비

Search Result 795, Processing Time 0.039 seconds

Analysis on Changes in Strength, Chloride Diffusion, and Passed Charges in Normal Concrete Considering Ages and Mix Proportions (재령 및 배합특성을 고려한 보통 콘크리트의 강도, 염화물 확산계수, 통과전하량 변화 분석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Concrete behavior in early-age is changing due to hydration reaction with time, and a resistance to chloride attack and strength development are different characterized. In the present work, changing strength and resistance to chloride attack are evaluated with ages from 28 days to 6 months. For the purpose, strength, diffusion coefficient, and passed charge are evaluated for normal concrete with 3 different mix proportions considering 28-day and 6-month curing conditions. With increasing concrete age, the changing ratio of strength falls on the level of 135.3~138.3%, while diffusion coefficient and passed charge shows 41.8%~51.1% and 53.6%~70.0%, respectively. The results of chloride diffusion coefficient and passed charge show relatively similar changing ratios since they are much dependent on the chloride migration velocity in electrical field. The changing ratios in chloride behaviors are evaluated to be much larger than those in compressive strength since the ion transport mechanism is proportional to not porosity but square of porosity.

Effect of Inorganic Particles on Organic Fouling in Pressurized Membrane Filtration (가압식 분리막 여과에서 무기입자의 존재가 유기파울링에 미치는 영향)

  • Jang, Hoseok;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.131-137
    • /
    • 2020
  • In this study, effect of inorganic particles on organic fouling was investigated by a laboratory-scaled pressurized membrane filtration. In order to cause organic fouling, sodium alginate (SA) was used as a feed solution. Regardless of the presence of inorganic SiO2 particles, the complete pore blocking played an important role in determining the fouling rate during the initial period of membrane filtration. However, the formation of cake layer resulted in the membrane fouling more dominantly as filtration time progressed. In the presence of inorganic particles, both specific cake resistance and compressibility associated with the membrane fouling formed were relatively lower than that without SiO2 particles. Membrane fouling was more severe at constant flux mode of filtration than that observed at constant pressure mode probably due to the concomitant increase of compressibility of fouling layer with transmembrane pressure (TMP). It was found that the presence of SA and SiO2 particles in feed solution provided the synergistic effect on the hydraulic backwashing to reduce membrane fouling as compared to the SA solution alone without the inorganic particles.

Engineering Properties for Planting of Porous Concrete Block Containing Rice Straw Ash (볏짚재를 혼입한 다공성콘크리트 블록의 식생을 위한 공학적 특성)

  • Sung Chan-Yong;Kim Young-Ik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.311-318
    • /
    • 2004
  • This study was performed to examine engineering properties for planting of porous concrete block containing rice straw ash. Tests for void ratio, compressive and flexural strength, pH by neutralization treatment time and curing method were peformed. As results, the void ratio tends to decrease with increasing rice straw ash content. But, the compressive and flexural strength tends to increase with Increasing rice straw ash content. When the neutralization was treated at the curing age 6 days, the greatest strength was showed. The pH of porous concrete without neutralization treatment in dry and water curing are shown in 10.32 ${\~}$ 10.55 and 9.41${\~}$9.59, respectively. The pH of porous concrete by neutralization treatment in dry and water curing were shown in 9.74${\~}$10.10 and 8.13${\~}$9.32, respectively. The porous concrete block size was 23 ${\times}$ 23 ${\times}$ 4 cm, and species of planting were Tall fescue, Lespedeza cyrtobotrya and Lespedeza cuneata. At the 6 months after seeding, germination ratio and grown-up length of Tall fescue, Lespedeza cyrtobotrya and Lespedeza cuneata were shown in 90, 60, $50\%$, and 40${\~}$50, 90${\~}$110, 65${\~}$75 cm, respectively. These porous concrete block containing rice straw ash could be used for planting.

Geophysical well logs in basaltic area, Jeju Island (제주 현무암 지역의 용암분출에 따른 물리검층 반응의 특성 고찰)

  • Hwang Seho;Shim Jehyun;Park Inhwa;Choi Sun Young;Park Ki Hwa;Koh Gi Won
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.55-71
    • /
    • 2005
  • Jeju Island is mainly composed of basaltic lava flows and subordinate amounts of volcaniclastic sedimentary rocks. Jeju Province operates the monitoring wells for seawater intrusion problems around Jeju Island to evaluate of groundwater resources in coastal area. Various surveys and monitoring have been performed in boreholes, and also conventional geophysical well loggings conducted to identify basalt sequences and assess seawater intrusion problems. Various conventional geophysical well logs, including radioactive logs, electrical log, caliper log, and temperature and conductivity log and heat-pulse flowmeter log were obtained in 29 boreholes. The results of geophysical well loggings for saturated rocks are interesting and consistent. Natural gamma logs are useful in basalt sequences to sedimentary interbeds, unconsolidated U formation, and seoguipo formation with higher natural gamma log regardless of saturated or unsaturated basalts. Neutron logs are very effective to discriminate among individual lava flows, flow breaks, and sedimentary interbeds in saturated formation. In hyalocastite, porosity is high and resistivity is low, and we think that hyalocastite is a major pathway of fluid flow. In trachybasalt, porosity has a wide range and resistivity is high. In sedimentary interbeds, unconsolidated U formation and seoguipo formation, porosity is high and resistivity is low. The temperature logs in eastern area in Jeju are useful to interpret the hydrogeological unit and evaluate seawater intrusion in Suan area.

  • PDF

Microstructure and Strength Properties of Alkali-activated Binder mixed with Sea Water (해수를 사용한 알칼리 활성화 결합재의 미세구조 및 강도 특성)

  • Jun, Yubin;Oh, Jae-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • This paper presents an investigation of the mechanical and microstructural properties on hardened samples that were synthesized using blended binder(fly ash(FA) and blast furnace slag cement(BFSC)), alkali activator and sea water or distilled water. Binders were prepared by mixing the FA and BFSC in different blend weight ratios of 6:4, 7:3 and 8:2. Sodium hydroxide and sodium silicate were used 5 wt% of binder, respectively, as an alkaline activator. The compressive strength and absorption were measured at the age of 3, 7 and 28 days, and the XRD, TGA and MIP tests were performed at the age of 28 days. An increase in the content of BFSC leads to an increase in the quantities of ettringite and C-S-H formed, regardless of the type of mixing water. And it also shows higher strength due to the reduction of pores larger than ~50 nm. All hardened samples in this study have common hydration products of C-S-H, $Ca(OH)_2$ and calcite. Hydrocalumite of all reaction products formed was only present in hardened sample mixed with sea water. For each FA/BFSC mixing ratio, the compressive strength of hardened sample mixed with sea water was similar to that mixed with distilled water. It is proposed that the slight increase of strength of samples mixed with sea water is mainly due to the presence of hydrocalumite phase containing chlorine ion, contributing to the change of total porosity and pore size distribution in samples.

Comparison of physical properties and air permeability in the sawdust during wetting and drying procedure (습윤 및 건조과정에서의 톱밥내 물리적 성상과 공기투과성의 변화)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2009
  • Moisture is one of the important design factors that affects to the changes of physical properties and air permeability in the composting matrix. This study examines the effects of moisture during the wetting and drying procedure on physical properties like bulk density, particle size, free air space and air permeability in the sawdust used as the bulking agent in composting process. During both procedures of wetting and drying of the water, with increasing moisture content, bulk density and particle size increased, but FAS decreased. In the range of near 40 to 60% moisture content on a wet basis, particle size and FAS in wetting procedure were larger and higher than those in drying procedure. During wetting procedure, pressure drop continuously decreased ranging from near 20 to 60% moisture content, despite of decreasing FAS as a consequence of increasing moisture, and then over the range of 60% moisture content, pressure drop rapidly increased to the saturated moisture condition while the pore space was filled with the water. On the other hand, during drying procedure, pressure drop decreased from the saturated condition to 40% moisture content. In the recommended range of 50 to 60% moisture content for composting operation, pressure drop in wetting procedure were lower than in drying procedure. For the enhancement of the air permeability in the composting matrix, the wetting procedure was proper than the drying procedure, and the optimum moisture content for the efficient composting operation was appeared to be near 60%.

Fabrication of a Nano/Microfiber Hybrid Mat for Control of Mechanical Properties and Porosity (기계적 특성 및 공극률 조절을 위한 나노/마이크로섬유 하이브리드 매트 제작)

  • Kim, Jeong Hwa;Jeong, Young Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.41-48
    • /
    • 2017
  • Fine polymeric fibers have been gaining interest from the energy harvesting/storage, tissue, and bioengineering industries because of advantages such as the small diameter, high porosity, permeability, and similarities to a natural extracellular matrix. Electrospinning is one of the most popular methods used to fabricate polymeric fibers because it is not as limited in regards to the materials selection, and it does not require expensive or complex equipment. However, electrospun fibers have a severe aerodynamic instability because the small diameter fibers are able to pass through the atmospheric layer when there is a high electric field. As a result, electrospun fibrous mats have serious difficulties with controlling its shape and geometric properties. In this study, a hybrid nano/microfibrous mat is presented that is fabricated using electrospinning with two different solvent-based PCL solutions. This provides control of the fiber diameter, mat porosity, and mechanical properties. Various hybrid fibrous mats were fabricated after an experimental investigation of the effects of solvent on fiber diameter. It was then demonstrated that the mechanical properties and porosity of the fabricated various hybrid mats could be successfully controlled.

Polymer coating for controlled release of biostimulants from Biostimulant balls (생물활성촉진제의 용출율 제어를 위한 폴리머 코팅)

  • Song, Young-Chae;Woo, Jung-Hui;Senthilkumar, Palaninaicker
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.46-47
    • /
    • 2013
  • We prepared biostimulant balls using sea sediment mixed with biostimulants viz acetate, nitrate and sulfate. The Biostimulant balls were coated with Cellulose Acetate (CA) and Polysulfone (PS) to control the release of the biostimulants. SEM images showed that CA coating was porous and irregular in the inside and very uniform and tight like beehive while PS coating was the same in the inside and outside and not porous. Biostimulants release was found to be high in sea water compared to distilled water. The release of nitrate was higher compared to sulfate. In turbulent environment the release of bionutrients was 50% higher than static environment.

  • PDF

Mechanical Properties of an Open Graded Asphalt for Semi-rigid Pavement (반강성 포장용 개립도 아스팔트 재료의 성능평가)

  • Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • The present study evaluated the mechanical properties of open graded asphalt for semi-rigid pavements in order to determine the mixing proportion experimentally. A total twelve types of basic mixing proportions were set up and mechanical tests such as marshall stability, porosity, permeability, and cantabro loss were conducted based on Korean standards. From the tests results, it was found that the marshall stability in case of straight and modified asphalt increase up to the contents with 5.0% and 5.5% respectively. The porosity and permeability of asphalt tended to decrease as the asphalt contents increase, the coefficient of correlation between both were estimated 86%. The increase contents with asphalt range from 3.5% to 6.0% tended to decrease the cantabro loss and the modified asphalt enhanced the resistance of cantabro loss with range from 18.8% to 33.1% than straight asphalt under same asphalt contents. In comparison with test results and quality standards, it was concluded that the modified asphalt content of 4.5% is effective to adopt for open graded asphalt.

Fabrication and Characteristics of Mesophase Pitch-Based Graphite Foams Prepared Using PVA-AAc Solution (PVA-AAc 용액을 사용한 메조페이스 핏치기반 그라파이트 폼의 제조 및 특성)

  • Kim, Ji-Hyun;Lee, Sangmin;Jeong, Euigyung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.706-713
    • /
    • 2015
  • Graphite foams (GFs) were prepared by adding different amounts of mesophase pitch (MP) into polyvinyl alcohol-acrylic acid (PVA-AAc) solution followed by the heat treatment. It was confirmed that the pore diameters of GFs were controlled by the slurry concentration, which was the mesophase content added in polymer solution, and their thermal conductivity and compressive strength were also controlled by porosities of GFs formed at different conditions. The resulting GFs in this study had the highest thermal conductivity of $53.414{\pm}0.002W/mK$ and compressive strength of $1.348{\pm}0.864MPa$ at 0.69 in porosity. The thermal conductivity of MP based GFs increased approximately 23 times higher than that of using isotropic pitch based GFs due to the developed graphitic structure.