• Title/Summary/Keyword: 공구마멸

Search Result 164, Processing Time 0.024 seconds

A Study on a Way of Cutting Force Analysis in Drilling a Steel Sheet (강판의 드릴가공에 대한 절삭력 해석방법에 관한 연구)

  • 김민호;신형곤;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.882-885
    • /
    • 2000
  • The machinability of material was evaluated using high speed steel drill on hot-rolled high strength steel. Cutting resistance and tool wear were investigated by drilling experimentation. When the steel-board specimens were drilled in industrial condition, the relationship between average of thrust and cutting resistance was random because of slip of chuck and strain of workpiece. The primary objective of this study is to develop the strategy of analysis that can detect drilling states in industrial condition and such strategy is programmed with visual C++. The developed program can analyze thrust of initial rising zone. The result is obtained that thrust of rising zone is closely related to tool wear in despite of industrial condition.

  • PDF

Die and Mold Making for Connecting Rod Parts through High Speed Machining (고속가공을 통한 커넥팅 로드용 금형 가공)

  • 임유업;김정석;강명창;이득우;정융호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.926-929
    • /
    • 2000
  • Recently, there are lots of applications in machining dies using CAD/CAM systems. which results in reduction of machining time and rising of machining efficiency applying high speed machining and high quality machining. Investigation of machinability is necessary in order to apply high speed machining. In machining complicate 3D model such as connecting rod die. the need of high speed machine and coated tool is requested recently in this field. This paper introduce the database of high speed machining to improve machining efficiency of connecting rod die.

  • PDF

Micro Pattern Machining on Larger Surface Roll Molds (대면적 롤금형 미세패턴 가공공정 기술)

  • Song, Ki-Hyeong;Lee, Dong-Yoon;Park, Kyung-Hee;Lee, Seok-Woo;Kim, Hyun-Cheol;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • In order to cope with the requirements of smaller patterns, larger surfaces and lower costs in the fields of displays, optics and energy, greater attentions are now being paid to the development of micro-pattern machining technology. Compared with flat moulds, large drums with micro patterns (roll moulds) have the advantages of short delivery, ease of manufacturing larger surfaces, and continuous moulding. This paper introduced the machining process technology of the roll moulds for display industry. The environmental effects were discussed and the importance of temperature maintenance was experimentally emphasized. The real time monitoring system for micro machining was introduced. A commercial solution was used to simulate the micro grooving and a deformation model of micro machined pattern was finally introduced.

A Study on the Analysis of Tool-wear Patterns and Mechanisms in Face Milling (정면밀링에서 공구마멸 패턴과 메커니즘 분석에 관한 연구)

  • Jang, Sung-Min;Baek, Seung-Yub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.24-29
    • /
    • 2017
  • This paper provides an experimental analysis on the breakage of the coated tool using the face-milling cutter of the machining center due to changes in the cutting speed and the feed rate. The experimental studies were conducted using STS 304 materials and the damage to the tool was analyzed according to the change in machining time. The experiments confirmed that the cutting speed and feed rate affected the tool damage and the mechanical impact and thermal shock were determined to severely damage the tool. From the production engineering point of view, it has been experimentally investigated that the increased feed rate significantly influences the material removal rate more than the increased cutting speed.

The Prediction of Tool Wear by Cutting Force Model in the Machining of Die Material (금형강 가공에서 절삭력 모델에 의한 공구마멸의 예측)

  • 조재성;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.61-66
    • /
    • 1994
  • Tool condition monitoring is one of the most important aspects to improve productivity and quality and to achieve intelligent machining system. The tool state is classified into three groups as chipping, wear and fracture. In this study, wear of a ceramic cutting tool for hardened die material (SKD11) was investigated. Flank wear was occured more dominant than crarer wear. Therefore, to predict flank wear, the modeling of cutting force has been performed. The modeling of cutting force by an assumption that act the stress distribution on the tool face obtained through a numerical analysis. The relationships between the cutting force and the tool wear can be constructed by machining paraneters with cutting conditions. Experiments were performed under the various cutting conditions to ensure the validity of force models. The theoretical predictions of the flank wear is approximately in good agreement with experimental result.

  • PDF

Micro Hole Machining for Ceramics ($Al_2O_3$) Using Ultrasonic Vibration (초음파 진동을 이용한 세라믹 소재의 마이크로 홀 가공)

  • 박성준;이봉구;최헌종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2004
  • Ultrasonic machining is a non-thermal, non-chemical, md non-electorial material removal process, and thus results in minimum modifications in mechanical properties of the brittle material during the process. Also, ultrasonic machining is a non-contact process that utilize ultrasonic vibration to impact a brittle material. In this research characteristics of micro-hole machining for brittle materials by ultrasonic machining(USM) process have been investigated. And the effect of ultrasonic vibration on the machining conditions is analyzed when machining fir non-conductive brittle materials using tungsten carbide tools with a view to improve form and machining accuracy.

Characteristics of tool wear in cutting glass fiber reinforced plastics : the effect of physical properties of tool materials (유리섬유 강화 플라스틱(GERP) 절삭시의 공구마멸 특성)

  • 이원평;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 1988
  • A turning (facing) test on Glass Fiber Reinforced Plastics was performed with several tool materials, e.g., cemented carbides, cermet and ceramic, and the wear patterns and wear rate were analyzed to clarify the relation between physical(mechanical) properties and flank wear of cutting tool. The main results are obtained as follows: (1) When cutting speed is increased, the flank wear in every tool material grows the abnormal wear in the shape of triangle at a certain speed, i.e., a critical speed. (2) When cutting speed is increased, the wear rate in experimental tool material starts to increase remarkably at a critical speed. (3) The thermal conductivity among the properties of the tool material and the thermal crack coefficient of it are almost in proportion to the critical speed. (4) The order of performance in tool materials for cutting GFRP is K 10, M10, P20, TiC, CB.

  • PDF

Estimation of Machinability for Super Heat-resistant Alloys Inconel 600 in Turning Process (선삭가공에서 초내열합금 Inconel 600의 가공성 평가)

  • Won, Jong-Sik;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.1-8
    • /
    • 2011
  • Recently, super heat-resistant alloy Inconel 600 come into spotlight as the material of airplane parts but this material causes lots of problems that is, reduction of machinability and attritious wear and breakage of cutting tool during turning processing due to high temperature strength and cohesion between tool material and Inconel 600. Therefore, in this study, it was purposed to determine tool material kind and to select of proper cutting range when turning process was carried out for Inconel 600. In order to these Purpose, coated carbide tool and ceramic tool was used in this experiment and the machinability of Inconel 600 was investigated from perspective of the cutting force, chipping and wear of tool and deposition phenomenon of chip.

A Study on Micro ED-Drilling of cemented carbide (초경합금의 미세방전 드릴링에 관한 연구)

  • Kim, Chang-Ho;Kang, Soo-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2010
  • The wavelet transform is a popular tool for studying intermittent and localized phenomena in signals. In this study the wavelet transform of cutting force signals was conducted for the detection of a tool failure in turning process. We used the Daubechies wavelet analyzing function to detect a sudden change in cutting signal level. A preliminary stepped workpiece which had intentionally a hard condition was cut by the inserted cermet tool and a tool dynamometer obtained cutting force signals. From the results of the wavelet transform, the obtained signals were divided into approximation terms and detailed terms. At tool failure, the approximation signals were suddenly increased and the detailed signals were extremely oscillated just before tool failure.

A Basic Study on the Evaluation of Flat End-mill Coated TiAlN (TiAlN코팅 평 엔드밀의 성능평가에 관한 기초 연구)

  • 유중학;국정한;김문기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.130-136
    • /
    • 2001
  • The purpose of this study is an evaluation of flat end mills to develop appropriate tools for the high speed machining. First of all, several flat end mills which are produced by different makers are selected to analyze the performances of the tools. Experimental works are also executed to measure cutting farce, tool wear and surface roughness for different cutting conditions. And then the results are compared and analyzed for developing optimal cutting tool in the high speed condition.

  • PDF