Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
1995.11a
/
pp.115-125
/
1995
본 논문에서는 컴퓨터 시스템에서 침입 감지 시스템을 설계함에 있어서 사용될 수 있는 새로운 방법인 Event Sequence Tracking 방법을 제안하였다. Event Sequence Tracking 방법에서는 컴퓨터 시스템의 공격방법을 크게 두가지로 분류한다. 첫번째는 일련의 시스템 명령어를 이용한 공격방법이고 두번째는 침입자 자신이 만들었거나 다른 사람으로부터 얻은 프로그램을 이용하는 방법이다. 첫번째 공격방법에 대한 감지방법은 시스템을 공격할 때 사용한 일련의 시스템 명령어들을 감사 데이타를 분석하여 찾아내고 이 결과를 기존에 알려진 공격 시나리오들과 비교하여 침입자를 찾아내는 방식이다. 두번째 공격방법에 대한 감지 방법은 보안 관리자가 정해놓은, 시스템에서 일반 사용자가 할 수 없는 행위에 관한 보안 정책에 따라 Key-Event 데이타 베이스를 만들고 여기에 해당하는 event의 집합을 감사 데이타에서 찾아내는 방법이다. Event Sequence Tracking 방법은 Rule-based Penetration Identification 방법의 일종으로서 시스템의 공격방법을 분류하여 컴퓨터 시스템에의 침입을 효과적으로 감지할 수 있다는 것과 rule-base의 생성과 갱신을 함에 있어서 보다 간단하게 할 수 있다는 장점을 갖는다.
The main contents of this paper is to develope effective measures for Internet Web service attack, classifying vulnerability of Web Service by network layer and host unit and researching classification method by attack range of type of services. Using this paper, we can accumulate analyzed Web service attack information which is key information of promote Web security strengthening business, and basis of relevant security research for detect and response Web site attack which can contribute to activation information security industry.
컴퓨팅 환경이 보다 신뢰성 있고 실질적으로 사용되기 위해서는 보안이 필수적인 기능으로 요구된다. 알려진 공격의 패턴을 이용한 침입탐지는 공격자의 여러 가지 변형된 방법이나 새로운 공격 방법에 의해 쉽게 공격당할 수 있다. 또한 각각의 보안정책을 교묘히 회피하는 많은 공격 방법들이 수시로 개발되어 시도되고 있다. 따라서 침입에 성공하는 많은 공격들은 기존의 공격 패턴과 보안정책 사이의 허점을 이용하여 발생된다고 볼 수 있다. 본 논문에서 제안된 방법은 새로운 공격을 탐지하기 위해 이를 탐지하기 위한 특징값을 규칙집합을 통해 획득한다. 규칙집합은 알려진 공격, 보안정책과 관리자의 경험적 지식에 대한 분석을 통해 공격의 특징을 감지할 수 있도록 작성된다. 이러한 규칙집합에 의해 획득된 특징값들은 훈련단계에서 Naive Bayes 분류기법을 통해 공격에 대한 통계적 특징값으로 사용한다. 제안된 방법은 훈련단계에서 얻어진 공격에 대한 통계적 특징값을 이용하여 변형된 공격이 나 새로운 공격을 탐지할 수 있다.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.1
/
pp.27-35
/
2022
In this paper we propose white noise adding method to prevent missclassification of deep learning system by adversarial attacks. The proposed method is that adding white noise to input image that is benign or adversarial example. The experimental results are showing that the proposed method is robustness to 3 adversarial attacks such as FGSM attack, BIN attack and CW attack. The recognition accuracies of Resnet model with 18, 34, 50 and 101 layers are enhanced when white noise is added to test data set while it does not affect to classification of benign test dataset. The proposed model is applicable to defense to adversarial attacks and replace to time- consuming and high expensive defense method against adversarial attacks such as adversarial training method and deep learning replacing method.
In this study, we try to detect new attacks for vehicle by learning only one class. We use Car-Hacking dataset, an intrusion detection dataset, which is used to evaluate classification performance. The dataset are created by logging CAN (Controller Area Network) traffic through OBD-II port from a real vehicle. The dataset have four attack types. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve high efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data, which are new attacks. In this study, we use one class classifier to detect new attacks that are difficult to detect using signature-based rules on network intrusion detection system. The proposed method suggests a combination of parameters that detect all new attacks and show efficient classification performance for normal dataset.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.302-305
/
2017
사이버 공격은 점차 다양해지고, 그 위험성은 날로 심각해지고 있다. 가장 강력한 공격 중 하나는 DDoS (Distributed Denial of Service) 공격이다. 본 논문에서는 다양한 사이버 공격을 분류하고 이에 따른 방법 기법을 서술하겠다. 특히, 최신 DDoS 공격 탐지 방법을 소개하고 딥러닝 (Deep Learning)을 활용한 최신 방어 기법 연구에 대해 살펴보도록 하겠다.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.69-72
/
2024
모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.
Nowadays, followed the internet service contents increasing makes also increase attack case on the web system. Usually web attack use mixed many kinds of attack mechanism for successfully attack to the server system. These increasing of the kinds attack mechanism, however web attack defence mechanism is not follow the spread of the attack. Therefore, for the defends web application, web attack should be categorizing and analysing for the effective defense. In this paper, we analyze web attack specification evidence and behavior system that use for effective expressions what we proposed. Also, we generate web attack scenario, it is for using verification of our proposed expressions.
자율주행 시스템이 탑재되어 있는 무인이동체는 운용환경에 따라 공중, 해상, 육상 무인이동체로 분류할 수 있고 모든 분야에서 관련 기술 개발이 활발히 진행되고 있다. 무인이동체는 자율주행 시스템이 탑재되어 외부 환경을 스스로 인식해 상황을 판단하는 특징을 갖고 있다. 따라서, 무인이동체는 센서로부터 수집되는 데이터를 이용하여 주변 환경을 인식해야 한다. 이러한 이유로 보안 (Security) 분야에서는 무인이동체에 탑재되는 센서를 대상으로 신호 오류주입을 수행하여 해당 무인이동체의 오동작을 유발하는 연구결과들이 최근 발표되고 있다. 신호 오류주입공격은 물리레벨 (PHY-level) 에서 수행되기 때문에, 공격 수행 여부를 소프트웨어 레벨에서 탐지하는 것은 매우 어렵다는 특징을 갖고 있다. 현재까지 신호 오류주입 공격을 탐지할 수 있는 방법은 다수의 센서를 이용하는 센서퓨전 (Sensor Fusion)을 기반으로 하는 방법이 있다. 하지만, 현실적으로 하나의 무인이동체에 동일한 기능을 하는 센서 여러 개를 중복해서 탑재하는 것은 어려움이 있다. 그리고 단일 센서만을 이용하여 신호 오류주입 공격을 탐지하는 방법에 대해서는 아직까지 연구가 진행되고 있지 않다. 본 논문에서는 무인이동체 환경에서 가장 널리 사용되고 있는 MEMS 센서를 대상으로 신호 오류주입 공격을 재연하고, 단일 센서 환경에서 해당 공격을 탐지할 수 있는 방법에 대하여 제안한다.
As the information and communication environment develops, the environment of military facilities is also development remarkably. In proportion to this, cyber threats are also increasing, and in particular, APT attacks, which are difficult to prevent with existing signature-based cyber defense systems, are frequently targeting military and national infrastructure. It is important to identify attack groups for appropriate response, but it is very difficult to identify them due to the nature of cyber attacks conducted in secret using methods such as anti-forensics. In the past, after an attack was detected, a security expert had to perform high-level analysis for a long time based on the large amount of evidence collected to get a clue about the attack group. To solve this problem, in this paper, we proposed an automation technique that can classify an attack group within a short time after detection. In case of APT attacks, compared to general cyber attacks, the number of attacks is small, there is not much known data, and it is designed to bypass signature-based cyber defense techniques. As an attack model, we used MITRE ATT&CK® which modeled many parts of cyber attacks. We design an impact score considering the versatility of the attack techniques and proposed a group similarity score based on this. Experimental results show that the proposed method classified the attack group with a 72.62% probability based on Top-5 accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.