지속적으로 확장되는 데이터 스트림에 대한 데이터 마이닝 수행과정에서는 메모리 사용량을 가용한 범위 내로 제한하는 것이 중요한 요소이다. 본 논문에서는 데이터 스트림 환경에서 한정된 메모리 공간을 이용하여 빈발 항목집합을 탐색하는데 효과적인 프라임 패턴 트리(Prime pattern tree: PPT)구조를 제안한다. 프라임 패턴 트리는 기존의 전위 트리 구조와 비교하여 항목집합들을 하나의 노드로 관리함으로써 트리의 크기를 크게 줄일 수 있는 장점이 있다. 또한, 전지 임계값 $S_{\delta}$에 따라 노드를 병합하거나 분리하여 동적으로 트리의 크기와 결과 집합의 정확도를 마이닝 수행 중에 조절 할 수 있다. $S_{\delta}$값이 크면 한 노드에서 관리되는 항목집합의 수가 증가하게 되고, 출현 빈도수를 추정해야 하기 때문에, $S_{\delta}$값이 작을수록 결과집합의 정확도가 높다. 이처럼 PPT에는 트리의 크기와 정확도의 trade-off 가 존재한다. PPT의 이러한 특성에 기반하여, 데이터 스트림에서 갑자기 데이터 집합에 변화가 생겨 빈발항목이 될 가능성이 높은 항목들이 많이 출현하는 경우에도 마이닝을 지속적으로 수행할 수 있도록 지원한다. 본 논문에서는 프라임 패턴 트리를 이전 연구에서 제안한 데이터 스트림에서 최근 빈발 항목 탐색 방법인 estDec 방법에 적용하여 한정된 작은 양의 메모리 공간을 이용하여 온라인 데이터 스트림에서 빈발항목을 탐색하는 방법을 제시한다. 또한, 가용 메모리 범위에서 최적의 메모리를 사용하여 최적의 마이닝 결과를 얻을 수 있도록 하는 메모리 사용량에 대한 적응적 방법을 제시한다. 끝으로, 여러 실험을 통한 효율성 검증을 통해 제안된 방법의 여러 특성을 확인한다.
고차원 데이터에서는 데이터마이닝 기법 중에서 특징 선택은 매우 중요한 과정이 되었다. 그러나 전통적인 단일 특징 선택방법은 더 이상 효율적인 특징선택 기법으로 적합하지 않을 수 있다. 본 논문에서 우리는 고차원 데이터에 대한 효율적인 특징선택을 위하여 혼합형 특징선택 기법을 제안하였다. 본 논문에서는 KNHANES 데이터에 제안한 혼합형 특징선택기법을 적용하여 분류한 결과 기존의 분류기법을 적용한 모델보다 5% 이상의 정확도가 향상되었다.
순차 패턴을 찾는 것은 데이타마이닝 응용분야에서 중요한 문제이다. 기존의 순차 패턴 마이닝 알고리즘들은 아이템으로만 이루어진 순차 패턴만을 취급하였으나 경제나 과학분야와 같은 많은 분야에서는 정량 정보가 아이템과 같이 기록되어 있으며, 기존의 알고리즘이 처리하지 못하는 이러한 정량 정보는 사용자에게 보다 유용한 정보를 전달하여 줄 수 있다. 본 논문에서는 정량 정보를 포함한 순차패턴 마이닝 문제를 제안하였다. 기존의 순차패턴 알고리즘에 대한 단순한 확장으로는 모든 정량에 대한 후보 패턴들을 모두 생성하기 때문에 확대된 탐색 공간을 효율적으로 탐색할 수 없음을 보이고, 이러한 단순한 확장 알고리즘의 성능을 대폭 향상시키기 위하여 정량 정보에 대해 해쉬 필터링과 정량 샘플링 기법을 제안하였다. 다양한 실험 결과들은 제안된 기법들이 단순히 확장된 알고리즘과 비교하여 수행시간을 매우 단축시켜 줄 뿐만 아니라, 데이타베이스 크기에 대한 확장성 또한 향상시켜줌을 보여 준다.
본 연구는 정부 정보나 공공데이터의 활용과 국민이 체감할 수 있는 서비스를 제공하기 위해 수요자 중심의 서비스 디자인을 활용해 정책 서비스 개발을 혁신하고자 하였다. 2015년 대구지역 동북지방통계청이 운영한 국민디자인단의 사례는 통계청이 보유하고 있는 GIS공간정보에 대한 데이터마이닝과 카드사의 실시간 결제정보를 활용해 예비창업자들을 위한 '창업 의사결정 지원'서비스를 제안하고자 하였다. 이를 위해 서비스디자인의 프로세스와 방법론을 채택하였고, 다양한 이해 관계자의 참여를 통해 이루어졌다. 본 연구를 통해 서비스디자인을 기반으로 한 국민디자인단 활동은 정부 정보 공개에 기반 한 공공서비스를 혁신하는데 유효함을 시사한다. 또한, 정부가 정보나 공공데이터를 국민에게 유용한 형태로 공개하거나 개방하고자 할 때 고려할 수 있는 접근 방법으로서 가치 있는 연구로 사료된다.
안전한 네트워크의 운영을 함에 있어 네트워크 침입 탐지에서 오탐지율을 줄이고 정탐지율을 높이는 것은 매우 중요한 일이라 할 수 있다. 최근에 얼굴 인식과 생물학 정보칩 분류 등에서 활발히 적용 연구되는 SVM을 침입탐지에 이용하면 실시간 탐지가 가능하므로 탐지율의 향상을 기대할 수 있다. 그러나 기존의 연구에서는 입력값들을 벡터공간에 나타낸 후 계산된 값을 근거로 분류하므로, 이산형의 데이터는 입력 정보로 사용할 수 없다는 단점을 가지고 있다. 따라서 이 논문에서는 의사결정트리를 SVM에 결합시킨 침입 탐지 모델을 제안하고 이에 대한 성능을 평가한 결과 기존 방식에 비해 침입 탐지율, F-P오류율, F-N오류율에 있어 각각 5.5%, 0.16%, 0.82% 향상이 있음을 보였다.
The mortality rate in industrial accidents in South Korea was 11 per 100,000 workers in 2015. It's five times higher than the OECD average. Economic losses due to industrial accidents continue to grow, reaching 19 trillion won much more than natural disaster losses equivalent to 1.1 trillion won. It requires fundamental changes according to industrial safety management. In this study, We classified the risk of accidents in industrial complex of Ulju-gun using spatial analytics and data mining. We collected 119 data on accident data, factory characteristics data, company information such as sales amount, capital stock, building information, weather information, official land price, etc. Through the pre-processing and data convergence process, the analysis dataset was constructed. Then we conducted geographically weighted regression with spatial factors affecting fire incidents and calculated the risk of fire accidents with analytical model for combining Boosting and CART (Classification and Regression Tree). We drew the main factors that affect the fire accident. The drawn main factors are deterioration of buildings, capital stock, employee number, officially assessed land price and height of building. Finally the predicted accident rates were divided into four class (risk category-alert, hazard, caution, and attention) with Jenks Natural Breaks Classification. It is divided by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the other groups. As the analysis results were also visualized on maps, the danger zone can be intuitively checked. It is judged to be available in different policy decisions for different types, such as those used by different types of risk ratings.
사례기반추론(CBR:Case-Based Reasoning)은 기존 데이터와 사례 데이터들의 관계성을 추론하는 기법으로 유사도(Similarity)와 유클리디안(Euclidean) 거리 계산 방법이 가장 많이 사용되고 있다. 그러나 이 방법들은 기존 데이터와 사례 데이터를 모두 비교하기 때문에 데이터 검색과 필터링에 많은 시간이 소요되는 단점이 있다. 따라서 이를 해결하기 위한 다양한 연구들이 진행되고 있다. 본 논문에서는 기존의 유사도와 유클리디안 계산과정에서 발견된 패턴을 활용한 SE(Speed Euclidean-distance) 계산방법을 제안한다. SE 계산방법은 새로운 사례입력에 발견된 패턴과 가중치를 적용하여 빠른 데이터 추출과 수행시간 단축으로 시간적 공간적 제약사항에 대한 연산 속도를 향상시키고 불필요한 연산 수행을 배제하는 것이다. 실험을 통해 유사도나 유클리디안 방법으로 데이터를 추출하는 기존의 방법보다 제안하는 방법이 다양한 컴퓨터 환경과 처리 속도에서 성능이 향상됨을 확인할 수 있었다.
철도는 인터페이스 산업으로 철도차량 선로 관제 등이 유기적으로 맞물려야 움직일 수 있다. 이를 정상적으로 운영하기 위해서는 많은 유지보수 활동이 필요한데 이러한 활동과정에서 발생하는 데이터들은 각 분야별로 관리하고 있어 업무특성에 따라 위치, 시간 등 기준 데이터가 각각 상이하여 시 공간 기반의 통합 분석을 할 수 없는 실정이다. 각 분야별로 상이한 데이터를 통합 분석하기 위해서는 데이터마이닝 기법을 통해 유의미한 정보를 추출하여 분석하는데, 이러한 분석을 위해서는 데이터 유형의 상호관련성을 인지하기 위한 기준정보의 추출과 매핑이 반드시 필요하다. 본 연구는 서로 다른 분야에서 발생하는 안전과 관련된 데이터에 대한 매핑 툴 선정과 결과에 대하여 검증을 수행하고자 한다.
방대한 유전 정보를 분석, 가공하는 생명정보학의 중요성은 더욱 높아지고 있다. 본 논문에서는 단백질의 1차 구조만으로 단백질의 구조와 기능을 예측하는 새로운 데이터마이닝 방법을 제안한다. 단백질 서열만으로 특징 추출시 발생할 수 있는 문제점인 방대한 탐색공간을 효과적으로 축소하기 위해 n-Block substring 탐색 알고리즘을 제안한다. 또한 선별된 각 substring의 도메인 연관도를 결정하는 가중치를 구하여 가중 선형모형을 구축함으로써 구조와 기능에 관련이 있을 것으로 예상되는 단백질 도메인의 특징을 추출하고 분류에 효과적임을 보인다. 도메인에 포함되는 각각의 CDS(coding sequence)에 대해 모형으로부터 구한 점수를 통해 해당 도메인과의 연관성의 정도를 추정하며, 분류 효율을 더욱 향상시킬 수 있음을 보인다.
근래 정보의 다양성과 활용에 따라 많은 데이터가 생성되었고, 데이터를 수집, 저장, 가공 및 예측 하는 빅데이터 분석의 중요성이 확대되었으며, 필요한 정보만을 수집할 수 있는 능력이 요구되고 있다. 웹 공간은 절반 이상이 텍스트로 이루어져 있고, 유저들의 유기적인 상호작용을 통해 수많은 데이터가 발생한다. 대표적인 텍스트 데이터 수집 방법으로 크롤링 기법이 있으나 데이터를 가져올 수 있는 방법에 치중되어 웹 서버나 관리자를 배려하지 못하는 크롤러가 많이 개발되고 있다. 본 논문에서는 크롤링 과정에서 발생할 수 있는 문제점 및 고려해야 할 주의사항에 대해 살펴보고 효율적으로 데이터를 가져올 수 있는 개선된 동적 웹 크롤러를 설계 및 구현한다. 기존 크롤러의 문제점들을 개선한 크롤러는 멀티프로세스로 설계되어 작업소요 시간이 평균적으로 4배정도 감소하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.