• Title/Summary/Keyword: 공간 단위 재구성

Search Result 24, Processing Time 0.023 seconds

A Study on Urban Flower Landscape Type Classification - Focused on Literature and Expert FGI - (도시 화훼경관 유형화에 관한 연구 - 문헌 및 전문가 FGI를 중심으로 -)

  • Yoon, Duck-Kyu;Kim, Gun-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.42-58
    • /
    • 2020
  • The purpose of this study is to classify types of urban flower landscape. As a result of the study, first, through literature and case review, it was found that the four elements of place element, form element, natural element, artificial element, should be included in the sentence and key expression for defining the concept of flower landscape. In contemplating these four elements, a newly reconstructed concept of flower landscape was presented. This is expected to be the basis for the flower landscape integration theory. Second, flower landscape was defined as a genre and a unit of urban landscape. In addition, in order to build a system of flower landscape as a specialized area, after considering the concept, characteristics, and functions of a large category of urban landscape, its hierarchical categories with flower landscape were newly arranged. Thus, the flower landscape as an urban landscape was suggested. Third, in order to provide rational selection materials to consumers through type classification, related theories were investigated by expanding not only to the flower field, but also to the urban planning and urban ecology fields. 41 elements for the type classification were extracted, and 4 core elements were derived through the clustering process. Based on the 4 elements as the classification criteria, through the opinion verification from the FGI with experts, 9 types of middle-classification and 30 types of small-classification were derived. As a follow-up research suggestion, if a valid type is additionally established through a monitoring in the type application process, and more specified application types are developed and organized by expanding second-level classification hierarchy to the third-level hierarchy, this will lead to great studies improving the system of the types.

Development of Independent Target Approximation by Auto-computation of 3-D Distribution Units for Stereotactic Radiosurgery (정위적 방사선 수술시 3차원적 공간상 단위분포들의 자동계산법에 의한 간접적 병소 근사화 방법의 개발)

  • Choi Kyoung Sik;Oh Seung Jong;Lee Jeong Woo;Kim Jeung Kee;Suh Tae Suk;Choe Bo Young;Kim Moon Chan;Chung Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • The stereotactic radiosurgery (SRS) describes a method of delivering a high dose of radiation to a small tar-get volume in the brain, generally in a single fraction, while the dose delivered to the surrounding normal tissue should be minimized. To perform automatic plan of the SRS, a new method of multi-isocenter/shot linear accelerator (linac) and gamma knife (GK) radiosurgery treatment plan was developed, based on a physical lattice structure in target. The optimal radiosurgical plan had been constructed by many beam parameters in a linear accelerator or gamma knife-based radiation therapy. In this work, an isocenter/shot was modeled as a sphere, which is equal to the circular collimator/helmet hole size because the dimension of the 50% isodose level in the dose profile is similar to its size. In a computer-aided system, it accomplished first an automatic arrangement of multi-isocenter/shot considering two parameters such as positions and collimator/helmet sizes for each isocenter/shot. Simultaneously, an irregularly shaped target was approximated by cubic structures through computation of voxel units. The treatment planning method by the technique was evaluated as a dose distribution by dose volume histograms, dose conformity, and dose homogeneity to targets. For irregularly shaped targets, the new method performed optimal multi-isocenter packing, and it only took a few seconds in a computer-aided system. The targets were included in a more than 50% isodose curve. The dose conformity was ordinarily acceptable levels and the dose homogeneity was always less than 2.0, satisfying for various targets referred to Radiation Therapy Oncology Group (RTOG) SRS criteria. In conclusion, this approach by physical lattice structure could be a useful radiosurgical plan without restrictions in the various tumor shapes and the different modality techniques such as linac and GK for SRS.

  • PDF

Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum (피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • In this paper, a method to directly calculate the major elements of skin color such as melanin and hemoglobin from the RGB signal of the camera is proposed. The main elements of skin color typically measure spectral reflectance using specific equipment, and reconfigure the values at some wavelengths of the measured light. The values calculated by this method include such things as melanin index and erythema index, and require special equipment such as a spectral reflectance measuring device or a multi-spectral camera. It is difficult to find a direct calculation method for such component elements from a general digital camera, and a method of indirectly calculating the concentration of melanin and hemoglobin using independent component analysis has been proposed. This method targets a region of a certain RGB image, extracts characteristic vectors of melanin and hemoglobin, and calculates the concentration in a manner similar to that of Principal Component Analysis. The disadvantage of this method is that it is difficult to directly calculate the pixel unit because a group of pixels in a certain area is used as an input, and since the extracted feature vector is implemented by an optimization method, it tends to be calculated with a different value each time it is executed. The final calculation is determined in the form of an image representing the components of melanin and hemoglobin by converting it back to the RGB coordinate system without using the feature vector itself. In order to improve the disadvantages of this method, the proposed method is to calculate the component values of melanin and hemoglobin in a feature space rather than an RGB coordinate system using a feature vector, and calculate the spectral reflectance corresponding to the skin color using a general digital camera. Methods and methods of calculating detailed components constituting skin pigments such as melanin, oxidized hemoglobin, deoxidized hemoglobin, and carotenoid using spectral reflectance. The proposed method does not require special equipment such as a spectral reflectance measuring device or a multi-spectral camera, and unlike the existing method, direct calculation of the pixel unit is possible, and the same characteristics can be obtained even in repeated execution. The standard diviation of density for melanin and hemoglobin of proposed method was 15% compared to conventional and therefore gives 6 times stable.

Development and Performance Evaluation of an Animal SPECT System Using Philips ARGUS Gamma Camera and Pinhole Collimator (Philips ARGUS 감마카메라와 바늘구멍조준기를 이용한 소동물 SPECT 시스템의 개발 및 성능 평가)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Kim, Jin-Su;Lee, Byeong-Il;Kim, Soo-Mee;Choung, In-Soon;Kim, Yu-Kyeong;Lee, Won-Woo;Kim, Sang-Eun;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.445-455
    • /
    • 2005
  • Purpose: We developed an animal SPECT system using clinical Philips ARGUS scintillation camera and pinhole collimator with specially manufactured small apertures. In this study, we evaluated the physical characteristics of this system and biological feasibility for animal experiments. Materials and Methods: Rotating station for small animals using a step motor and operating software were developed. Pinhole inserts with small apertures (diameter of 0.5, 1.0, and 2.0 mm) were manufactured and physical parameters including planar spatial resolution and sensitivity and reconstructed resolution were measured for some apertures. In order to measure the size of the usable field of view according to the distance from the focal point, manufactured multiple line sources separated with the same distance were scanned and numbers of lines within the field of view were counted. Using a Tc-99m line source with 0.5 mm diameter and 12 mm length placed in the exact center of field of view, planar spatial resolution according to the distance was measured. Calibration factor to obtain FWHM values in 'mm' unit was calculated from the planar image of two separated line sources. Te-99m point source with i mm diameter was used for the measurement of system sensitivity. In addition, SPECT data of micro phantom with cold and hot line inserts and rat brain after intravenous injection of [I-123]FP-CIT were acquired and reconstructed using filtered back protection reconstruction algorithm for pinhole collimator. Results: Size of usable field of view was proportional to the distance from the focal point and their relationship could be fitted into a linear equation (y=1.4x+0.5, x: distance). System sensitivity and planar spatial resolution at 3 cm measured using 1.0 mm aperture was 71 cps/MBq and 1.24 mm, respectively. In the SPECT image of rat brain with [I-123]FP-CIT acquired using 1.0 mm aperture, the distribution of dopamine transporter in the striatum was well identified in each hemisphere. Conclusion: We verified that this new animal SPECT system with the Phlilps ARGUS scanner and small apertures had sufficient performance for small animal imaging.