Development and Performance Evaluation of an Animal SPECT System Using Philips ARGUS Gamma Camera and Pinhole Collimator

Philips ARGUS 감마카메라와 바늘구멍조준기를 이용한 소동물 SPECT 시스템의 개발 및 성능 평가

  • Kim, Joong-Hyun (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Jae-Sung (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Jin-Su (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Byeong-Il (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Soo-Mee (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Choung, In-Soon (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Yu-Kyeong (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Won-Woo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Sang-Eun (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Chung, June-Key (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Myung-Chul (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Dong-Soo (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 김중현 (서울대학교 의과대학 핵의학교실) ;
  • 이재성 (서울대학교 의과대학 핵의학교실) ;
  • 김진수 (서울대학교 의과대학 핵의학교실) ;
  • 이병일 (서울대학교 의과대학 핵의학교실) ;
  • 김수미 (서울대학교 의과대학 핵의학교실) ;
  • 정인순 (서울대학교 의과대학 핵의학교실) ;
  • 김유경 (서울대학교 의과대학 핵의학교실) ;
  • 이원우 (서울대학교 의과대학 핵의학교실) ;
  • 김상은 (서울대학교 의과대학 핵의학교실) ;
  • 정준기 (서울대학교 의과대학 핵의학교실) ;
  • 이명철 (서울대학교 의과대학 핵의학교실) ;
  • 이동수 (서울대학교 의과대학 핵의학교실)
  • Published : 2005.12.31

Abstract

Purpose: We developed an animal SPECT system using clinical Philips ARGUS scintillation camera and pinhole collimator with specially manufactured small apertures. In this study, we evaluated the physical characteristics of this system and biological feasibility for animal experiments. Materials and Methods: Rotating station for small animals using a step motor and operating software were developed. Pinhole inserts with small apertures (diameter of 0.5, 1.0, and 2.0 mm) were manufactured and physical parameters including planar spatial resolution and sensitivity and reconstructed resolution were measured for some apertures. In order to measure the size of the usable field of view according to the distance from the focal point, manufactured multiple line sources separated with the same distance were scanned and numbers of lines within the field of view were counted. Using a Tc-99m line source with 0.5 mm diameter and 12 mm length placed in the exact center of field of view, planar spatial resolution according to the distance was measured. Calibration factor to obtain FWHM values in 'mm' unit was calculated from the planar image of two separated line sources. Te-99m point source with i mm diameter was used for the measurement of system sensitivity. In addition, SPECT data of micro phantom with cold and hot line inserts and rat brain after intravenous injection of [I-123]FP-CIT were acquired and reconstructed using filtered back protection reconstruction algorithm for pinhole collimator. Results: Size of usable field of view was proportional to the distance from the focal point and their relationship could be fitted into a linear equation (y=1.4x+0.5, x: distance). System sensitivity and planar spatial resolution at 3 cm measured using 1.0 mm aperture was 71 cps/MBq and 1.24 mm, respectively. In the SPECT image of rat brain with [I-123]FP-CIT acquired using 1.0 mm aperture, the distribution of dopamine transporter in the striatum was well identified in each hemisphere. Conclusion: We verified that this new animal SPECT system with the Phlilps ARGUS scanner and small apertures had sufficient performance for small animal imaging.

목적 : 임상용 Philips ARGUS 감마카메라와 특별 제작한 작은 구경의 바늘구멍조준기를 이용하여 animal SPECT를 개발하였다. 본 연구에서는 이 시스템의 물리적인 성능을 평가하고 소동물 실험에 적합한지를 평가하였다. 대상 및 방법: 스텝 모터와 이를 제어할 수 있는 소프트웨어를 이용한 피사체 회전장치를 개발하였다. 작은 입구(0.5, 1.0, 2.0 mm)의 바늘구멍조준기를 제작하였고 평면 공간해상도, 민감도, 단층촬영해상도 등을 포함한 물리적 성능을 모든 입구 크기에 대해 실험하였다. 조준기 입구로부터의 거리에 따른 사용 가능한 시야를 측정하기 위하여, 같은 간격만큼 떨어진 여러 선선원의 영상을 얻고 영상의 시야 내에서 보이는 선 영상의 개수를 이용하여 사용 가능한 시야를 측정하였다. 시야의 정중앙에 놓인 내경 0.5 mm, 길이 12 mm의 Tc-99m 선선원을 이용하여 거리에 따른 평면 공간 해상도를 측정하였다. 전체 반값두께를 'mm'단위로 얻기 위한 환산인자를 평면 영상에서의 두개의 서로 떨어진 선선원으로부터 계산하였다. 시스템 민감도를 측정하기 위하여 내경 1.0 mm의 Tc-99m 점선원을 사용하였다. 또한 냉소반점 모형과 열소반점 모형, 그리고 [I-123] FP-CIT를 정맥내 주사한 흰쥐의 뇌 영상의 SPECT 영상을 얻었고 여과후역투사 방법으로 재구성하였다. 결과: 사용 가능한 시야의 크기는 조준기의 초점으로부터의 거리에 비례하였고 이들의 관계는 선형 함수로 근사되었다(y=1.4x+0.5). 3 cm에서 1.0 mm 조준기로 측정한 민감도와 평면해상도는 각각 71 cps/MBq과 1.24 mm이었다. 1.0 mm 바늘구멍조준기에 대하여 [I-123] FP-CIT를 이용한 흰쥐의 뇌 SPECT 영상에서 각 반구의 줄무늬체 도파민 전달체 분포가 잘 구분되어 보였다. 결론: Philips ARGUS 스캐너와 작은 구경의 바늘구멍조준기로 개발한 새로운 소동물 SPECT 시스템이 소동물 영상을 얻는데 충분한 성능을 가짐을 입증하였다.

Keywords

References

  1. Kim YH, Lee DS, Kang JH, Lee YJ, Chung JK, Roh JK, et al. Reversing the silencing of reporter sodium/iodide symporter transgene for stem cell tracking. J Nucl Med 2005;46:305-11
  2. Kim KI, Chung JK, Kang JH, Lee YJ, Shin JH, Oh HJ, et al. Visualization of endogenous p53-mediated transcription in vivo using sodium iodide symporter. Clin Cancer Res 2005;11:123-8
  3. Shin JH, Chung JK, Kang JH, Lee YJ, Kim KI, So Y, et al. Noninvasive imaging for monitoring of viable cancer cells using a dual-imaging reporter gene. J Nucl Med 2004;45:2109-15
  4. So MK, Kang JH, Chung JK, Lee YJ, Shin JH, Kim KI, et al. In vivo imaging of retinoic acid receptor activity using a sodium/iodide symporter and luciferase dual imaging reporter gene. Mol Imaging 2004;3:163-71 https://doi.org/10.1162/1535350042380308
  5. Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997;44:1161-6 https://doi.org/10.1109/23.596981
  6. Missimer J, Maldi Z, Honer M, Keller C, Schubiger A, Ametamey S-M. Performance evaluation of the 16-module quad-HIDAC small animal PET camera. Phys Med Biol 2004;49:2069-81 https://doi.org/10.1088/0031-9155/49/10/016
  7. Tai C, Chatziioannou A, Siegel S, Young J, Newport D, Goble RN, et al. Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 2001;46:1845-1862 https://doi.org/10.1088/0031-9155/46/7/308
  8. Knoess C, Siegel S, Smith A, Newport D, Richerzhagen N, Winkeler A, et al. Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging 2003 May;30:737-47 https://doi.org/10.1007/s00259-002-1052-6
  9. Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJ, van Rijk PP, Burbach JP, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 2005;46:1194-200
  10. MacDonald LR, Patt BE, Iwanczyk JS, Tsui BMW, Wang Y, Frey EC et al. Pinhole SPECT of mice using the LumaGEM gamma camera. IEEE Trans Nucl Sci 2001;48:830-6 https://doi.org/10.1109/23.940171
  11. Wu MC, Gao DW, Sievers RE, Lee RJ, Hasegawa BH, Dae MW. Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. J Am Coll Cardiol 2003;42:576-82 https://doi.org/10.1016/S0735-1097(03)00716-2
  12. Wu MC, Hasegawa BH, Dae MW. Performance evaluation of a pinhole SPECT system for myocardial perfusion imaging of mice. Med Phys 2000;29:2830-9
  13. Kim JH, Lee JS, Kim JS, Lee BI, Kim SM, Lee WW, et al. Performance evlution of an animal SPECT system using Phillips ARGUS scintillation camera and pinhole collimator. J Nucl Med 2005;46[suppl]:250 [abstract]
  14. Bai C, Shao L, Ye J, DurbinM. The Effects of Center of Rotation Errors on Cardiac SPECT Imaging. IEEE Trans Nucl Sci 2003;50:1528-35 https://doi.org/10.1109/TNS.2003.817288
  15. National Electrical Manufacturers Association: NEMA standards publication NU1-2001: performance measurements of scintillation cameras. Rosslyn, VA, National Electrical Manufacturers Association, 2001
  16. Smith MF, Jaszczak RJ. An analytic model of pinhole aperture penetration for 3D pinhole SPECT image reconstruction. Phys Med Biol 1998;43:761-775 https://doi.org/10.1088/0031-9155/43/4/006
  17. Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000;27:140-6 https://doi.org/10.1007/s002590050019
  18. Li J, Jaszczak RJ, Greer KL, Coleman RE. A filtered backprojection algorithm for pinhole SPECT with a displaced centre of rotation. Phys Med Biol 1994;39:165-176 https://doi.org/10.1088/0031-9155/39/1/010