Spatio-temporal join operators are essential to the management of spatio-temporal data such as moving objects. For example, the join operators are parts of processing to analyze movement of objects and search similar patterns of moving objects. Various studies on spatio-temporal join queries in outdoor space have been done. Recently with advance of indoor positioning techniques, location based services are required in indoor space as well as outdoor space. Nevertheless there is no one about processing of spatio-temporal join query in indoor space. In this paper, we introduce continuous spatio-temporal self-join queries in indoor space and propose a method of processing of the join queries over stream data of moving objects. The continuous spatio-temporal self-join query is to update the joined result set satisfying spatio-temporal predicates continuously. We assume that positions of moving objects are represented by symbols such as a room or corridor. This paper proposes a data structure, called Candidate Pairs Buffer, to filter and maintain massive stream data efficiently and we also investigate performance of proposed method in experimental study.
A transform-space index indexes objects represented as points in the transform space An advantage of a transform-space index is that optimization of join algorithms using these indexes becomes relatively simple. However, the disadvantage is that these algorithms cannot be applied to original-space indexes such as the R-tree. As a way of overcoming this disadvantages, the authors earlier proposed the transform-space view join algorithm that joins two original- space indexes in the transform space through the notion of the transform-space view. A transform-space view is a virtual transform-space index that allows us to perform join in the transform space using original-space indexes. In a transform-space view join algorithm, the order of accessing disk pages -for which various space filling curves could be used -makes a significant impact on the performance of joins. In this paper, we Propose a new space filling curve called the adaptive row major order (ARM order). The ARM order adaptively controls the order of accessing pages and significantly reduces the one-pass buffer size (the minimum buffer size required for guaranteeing one disk access per page) and the number of disk accesses for a given buffer size. Through analysis and experiments, we verify the excellence of the ARM order when used with the transform-space view join. The transform-space view join with the ARM order always outperforms existing ones in terms of both measures used: the one-pass buffer size and the number of disk accesses for a given buffer size. Compared to other conventional space filling curves used with the transform-space view join, it reduces the one-pass buffer size by up to 21.3 times and the number of disk accesses by up to $74.6\%$. In addition, compared to existing spatial join algorithms that use R-trees in the original space, it reduces the one-pass buffer size by up to 15.7 times and the number of disk accesses by up to $65.3\%$.
Multi-way spatial join is a nested expression of two or more spatial joins. It costs much to process multi-way spatial join, but there have not still reported the scheme of parallel processing of multi-way spatial join. In this paper, parallel processing of multi-way spatial join consists of parallel multi-way spatial filter and parallel spatial refinement. Parallel spatial refinement is executed by the following two steps. The first is the generation of a graph used for reducing duplication of both spatial objects and spatial operations from pairs candidate object table that are the results of multi-way spatial filter. The second is the parallel spatial refinement using that graph. Refinement using the graph is proved to be more efficient than the others. In task creation for parallel refinement, minimum duplication partitioning of the Spatial_Obicct_On_Node graph shows best performance.
Delay and discontinuance phenomenon of service are cause by sudden increase of the network communication amount and the quantity consumed of resources when Internet users are driven excessively to a conventional single large database sewer. To solve these problems, spatial database cluster consisted of several single nodes on high-speed network to offer high-performance is risen. But, research about spatial join operation that can reduce the performance of whole system in case process at single node is not achieved. So, in this paper, we propose efficient parallel spatial join processing method in a spatial database cluster system that uses data partitions and replications method that considers the characteristics of space data. Since proposed method does not need the creation step and the assignment step of tasks, and does not occur additional message transmission between cluster nodes that appear in existent parallel spatial join method, it shows performance improvement of 23% than the conventional parallel R-tree spatial join for a shared-nothing architecture about expensive spatial join queries. Also, It can minimize the response time to user because it removes redundant refinement operation at each cluster node.
The choice of an effective indexing method is crucial to guarantee the performance of the spatial join operator which is heavily used in geographical information systems. The $R^*$-tree based method is renowned as one of the most representative indexing methods. In this paper, we propose an efficient spatial join technique based on the DOT(Double Transformation) index, and compare it with the spatial Join technique based on the $R^*$-tree index. The DOT index transforms the MBR of an spatial object into a single numeric value using a space filling curve, and builds the $B^+$-tree from a set of numeric values transformed as such. The DOT index is possible to be employed as a primary index for spatial objects. The proposed spatial join technique exploits the regularities in the moving patterns of space filling curves to divide a query region into a set of maximal sub-regions within which space filling curves traverse without interruption. Such division reduces the number of spatial transformations required to perform the spatial join and thus improves the performance of join processing. The experiments with the data sets of various distributions and sizes revealed that the proposed join technique is up to three times faster than the spatial join method based on the $R^*$-tree index.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.05a
/
pp.230-232
/
2011
Owing to the advent of digital devices which equipped with GPS, such as smartphone and tablet pc, a number of LBSNS applications have been released and even SNS applications serve various Location-Based Services. In twitter's case, the news of interesting area is provided to user not by being subscribed them automatically, but by being searched on web-site. This paper describes the system designed for users want to subscribe the local news without procedure like searching using operators. This system uses PBSM(Partition Based Spatial-Merge Join) which has no index for batch processing and against a massive query. The results from Spatial Join are stored in Materialized View then provided to user.
In this paper, we derived an efficient indexing scheme, SJ tree, which handles multi-attribute data and spatial join operations efficiently. In addition, a number of algorithms for manipulating multi-attribute data are given , together with their computational and I/O complexity . Moreover , we how that SJ tree is a kind of generalized B-tree. This means that SJ-tree can be easily implemented on existing built-in B-tree in most storage managers in the sense that the structure of SJ tree is like that of B-tree. The spatial join operation with spatial output is benchmarked using R-tree, B-tree, K-D-B tree, and SJ tree. Results from the benchmark test indicate that SJ tree out performance other indexing schemes on spatial join with point data.
In this paper, we focus on the filtering step of candidate objects for spatial join operations on the input tables that none of the inputs is indexed. Over the last decade, several spatial Join algorithms for the input tables with index have been extensively studied. Those algorithms show excellent performance over most spatial data, while little research on solving the performance degradation in the presence of skewed data has been attempted. Therefore, we propose a spatial hash strip join(SHSJ) algorithm that can refine the problem of skewed data in the conventional spatial hash Join(SHJ) algorithm. The basic idea is similar to the conventional SHJ algorithm, but the differences are that bucket capacities are not limited while allocating data into buckets and SSSJ algorithm is applied to bucket join operations. Finally, as a result of experiment using Tiger/line data set, the performance of the spatial hash strip join operation was improved over existing SHJ algorithm and SSSJ algorithm.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.665-667
/
2003
분산된 공간 데이터를 효과적으로 저장. 관리하고 공유하기 위하여 분산 공간 데이터베이스 시스템의 필요성이 대두되었다. 분산 공간 데이터베이스 시스템은 많은 변화가 있는 환경이기 때문에 최적화된 질의 플랜을 작성하기가 어렵고 또한 고비용의 공간 연산 비용을 고려해야 하는 문제를 가지고 있다. 본 논문은 질의 실행 시간이 변화된 분산 데이터베이스 환경을 고려하여 질의를 수행하며 공간 조인을 병렬적으로 수행하는 동적 콜렉터를 제안한다. 동적 콜렉터는 분산 데이터베이스 환경의 변화에 적응할 수 있으며 분산 공간 조인을 효율적으로 처리할 수 있다.
The distance join is a spatial join which finds data pairs in the order of distance between two spatial data sets using R-trees. The distance join stores node pairs in a priority queue, which are retrieved while traversing R-trees in a top-town manner, in the order of distance. This paper first shows that a priority strategy for the tied pairs in the priority queue during distance join processing has much effect on its performance, and then proposes an optimized secondary priority method. The experiments show that the proposed method is always better than the other methods in the performance perspectives.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.