• Title/Summary/Keyword: 공간영역

Search Result 3,879, Processing Time 0.029 seconds

A Study on the Landscape Interpretation of Songge Byeoleop(Korean Villa) Garden at Jogyedong, Mt. Bukhansan near Seoul for the Restoration (북한산 조계동 송계별업(松溪別業) 정원 복원을 위한 경관해석)

  • Rho, Jae-Hyun;Song, Suk-Ho;Jo, Jang-Bin;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.1-17
    • /
    • 2018
  • This study was conducted to interpret the landscape of Songge Byeoleop(Korean villa) garden at Jogyedong, Bukhansan near Seoul which was built in the mid 17C. to restore through the literature reviews and field surveys. The results were as follows; Songge Byeoleop garden was a royal villa, constructed at King Injo24(1646) of Joseon dynasty by prince Inpyeong(麟坪大君), Lee, Yo(李?, 1622~1658), the third son of King Injo who was a brother of King Hyojong. It was a royal villa, Seokyang-lu under Mt. Taracsan of Gyendeokbang, about 7km away in the straight line from main building. It was considered that the building system was a very gorgeous with timber coloring because of owner's special situation who was called the great prince. The place of Songge Byeoleop identity and key landscape of the place were consisted with Gucheon waterfall and the sound of the water with multi-layered waterfall which might be comparable to the waterfall of Yeosan in China. After the destruction of the building, the place was used for the royal tomb quarry, but there was a mark stone for forbidden quarry. The Inner part of Songge Beoleop, centered with Jogedongcheon, Chogye-dong, composted beautifully with the natural sceneries of Gucheon waterfall, Handam and Changbeok, and artificial structures, such as Bihong-bridge, Boheogak, Yeonghyudang and Gyedang. In addition, the existing Chinese characters, 'Songge Beoleop' and 'Gucheoneunpog' carved in the rocks are literary languages and place markings symbolizing with the contrast of the different forests and territories. They gave the names of scenery to the rock and gave meaning to them. Particularly, Gucheon waterfall which served as a visual terminal point, is a cascade type with multi-staged waterfall. and the lower part shows the topographical characteristics of the Horse Bowl-shaped jointed with port-holes. On the other hand, the outer part is divided into the spaces for the main entrance gate, a hanging bridge character, a bridge connecting the inside and the outside, and Yeonghyudang part for the purpose of living. Also in the Boheogak area, dual view frame structures are made to allow the view of the four sides including the width and the perimeter of the villa. In addition, at the view point in Bihong-bridge, the Gucheon water fall divides between the sacred and profane, and crosses the Bihong-bridge and climbs to the subterranean level.

Interpretation on the Theory of a Meaning Landscape in Maechun-Byulup Toesu-jeong Wonlim (매천별업(梅川別業) 퇴수정원림(退修亭園林)의 의미경관론적 해석)

  • Lee, Hyun-Woo;Kim, Jae-Sik;Shin, Sang-Sup;Rho, Jae-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.22-32
    • /
    • 2011
  • This study explored the architectural nature, the thought reflected in the place and the 'meaning-landscape' characteristic of a place, to where a retired scholar had lived. The object of the study is the Maechun-Byulup Toesu-jeong wonlim, which consists of a summer house and a garden forest. The results of the study are as following. Toesu-jeong wonlim is located at Daejeong-ri, Sannae-myeon, Namwon-si. It had been built by Maechun Park Chi-Gi in 1870 for his residence after retirement. It is a villa type pavilion and a garden forest which have Banseondaegi(伴仙臺記), Banseondae-10-yeong, Toesu-jeong(退修亭) Sangryangmun, a writing dedicated when putting up the ridge beam of a wooden house), Toesu-jeong Wonwun Byeongsoseo, hanging boards and tablets with poems written on them. In the Toesu-jeong wonlim, there are various 'meaning-landscapes' such as the Maechun-Byulup, Banseondae, Yabakdam and Simjinam together with engraved calligraphy related to the landscaping culture. It is also possible to find the remains of beautiful engraving on the stones and woods at Goksoo Yoogeo(曲水流渠) that suggest the banquets they had while discussing the elegant tastes and appreciating the landscape. The Toesu-jeong wonlim consists of the Toesu-jeong area(a pavilion), the Gwanseon-jae area(a shrine) area and the Gyejeong area(a garden with a brook) area. The pedantic 'meaning-landscape' elements, as the residence of retired scholar who spent his remaining life with elegant tastes, and the expertise of Maechun Park Chi-Gi, as a landscaping architect who built a villa and a garden forest in the motif of a Taoist hermit, can be extracted through the Banseondae-10yeong. The Banseondae-10yeong is the first Toesu-jeong poem and consisting of the Samseon-dae, Sejin-dae, Samcheong-dam, Yabak-dam, Samseo, Takgeum-dam, flat stones, caves, stone sculptures and harvest. The existing vegetation and plants in the Toesu-jeong wonlim are; natural pine forest in the rear garden, zelkova trees, wild cherry trees, apricot trees and pine trees bent to the waterfront direction. Except some ornament-species and shielding-species such as the poplars, most of current trees and vegetation keep the shape of the original Toesu-jeong wonlim landscape.

A Characteristics of Cultural Heritage Landscaping of Jeongnimsa Temple Site in Buyeo from Perspective of Maintenance Project (정비사업을 통해 본 부여 정림사지 문화재 조경의 특성)

  • Kim, Mi-Jin;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.38-49
    • /
    • 2021
  • The maintenance project of the Jeonglimsa temple site started with the objective of restoring the original structure of the temple, however, it was gradually transitioned to a landscaping maintenance project over time that constructs a landscape of the temple area. With paying attention to these facts, this study summarized the characteristics of cultural heritage landscaping of the Jeonglimsa temple site as follows. First, Cultural heritage landscaping is a landscaping act that creates, maintains, and manages landscapes within the spatial scope of the cultural heritage designated under the Cultural Heritage Protection Act and the cultural heritage protection area established around it. It is a work that includes protection and maintenance of the excavated remains, spaces by each function and plans for moving lines, Installation of structures to protect cultural properties, adoption of the facilities and structures for convenience of visitors, and construction of vegetation landscape. Second, the cultural heritage landscaping of the Jeonglimsa temple site has been developed in 5 periods, and these include 'the period of historical site investigation' that the temple name was identified through the designation of cultural assets and excavation investigation by the Japanese rule, 'the construction period of Baekje Tower Park' after the liberation from the Japanese rule, 'the period of Baekje Cultural Area Development Project' designated as a historical site, 'the period of the Comprehensive Development Project for a Specific Area of Baekje Culture',which was proceeded with the establishment of the park and museum instead of restoring the temple building due to the difficulty in gathering the pieces of historical evidence, and 'the period of the Jeonglimsa temple site restoring project', which was designated as a World Heritage Site while restoring the buildings deployment in the Buddhist temple at the time of foundation era of Baekje Dynasty. Third, this study verified the landscape changes of the Jeonglimsa temple site that have been transitioned, for instance, the creation of a commemorative park linked to the outer garden of Buyeo Shrine, the implementation of urban planning of the Japanese colonial era, the creation of a protective environment for the excavated historical structures and temple area, the restoration of building deployment in the Buddhist temple, and the sincerity restoration and utilization of cultural assets. Fourth, the landscape of Jeongnimsa temple site is determined by the subject and scope of cultural property designation, land use, movement lines and pavement, repairing methods of remains, structures, facilities, and vegetation. The characteristics of the cultural heritage landscape of Jeongnimsa Temple were derived, such as creating a procedural landscape considering the expansion of the cultural heritage designation scope, securing authenticity by maintaining relics in consideration of reversibility, creating a vegetative landscape suitable for historical and cultural landscapes, and enhancing the value of cultural heritage enjoyment by providing an open space.

A Composition and Role of Urban Water System in Connection with Historic City Structure - Focusing on Gyeongju, Gaegyeong, Hanyang, and Suwon Hwaseong - (역사도시구조와 연계한 도시수체계의 구성형태와 역할에 관한 연구 - 경주, 개경, 한양, 수원화성을 중심으로 -)

  • Kang, In-Ae;Lee, Kyung-Chan
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.99-110
    • /
    • 2021
  • This study intends to examine the characteristics of the construction method of the urban water system in the historical cities of Korea, focusing on Gyeongju, Gyeongju, Goryeo, Hanyang, and Suwon Hwaseong, which were created as new towns in the late Joseon Dynasty. It examines the meaning of waterways in connection with the urban skeletal structure, focusing on the location of cities, roads, and arrangement of urban facilities, and analyzes the compositional form of the water system. We tried to derive the relationship with the structure. In particular, it can be seen that water and natural water systems act as key factors in determining the location of a city, and have a close relationship with the urban structure, urban development process, and urban structure. In addition to the symbolic meaning of water in harmony with the geographical concept, realistic demands in terms of water level and water retention are an important background. In order to respond to various demands related to water space, various planning and technical elements for managing water space were introduced in the process of city formation and development. The planning elements of the urban water system in the process of urban formation and development are summarized as follows through the analysis of the research site. First, in the process of building the urban water system in Gyeongju, Goryeo, Goryeo, Hanyang, and Hwaseong, Suwon, which were selected as the research destinations, the water system in consideration of drainage and disaster is common, but the water system construction method and usability are common. shows the difference. Second, water and natural water systems act as symbolic elements to secure the legitimacy of the city location, and as a key factor in determining the location of the city in harmony with the geographical concept and determining the left direction of the city. Third, the natural water system prior to the formation of a city works as a basis for determining the compositional form of the urban water system constructed in the process of urban formation and development in harmony with the topographical conditions. Fourth, the urban water system built on the basis of natural water systems is constructed by linking natural waterways and planned artificial waterways. Fifth, the urban water system is being built in a planned manner in consideration of the utility in connection with the urban structure, such as securing of urban land, arrangement of urban facilities and areas, composition of functional areas, and land division, in addition to the perspective of drainage system and flood control in consideration of disasters.

Analysis of Chlorophyll-a and Algal Bloom Indices using Unmanned Aerial Vehicle based Multispectral Images on Nakdong River (무인항공기 기반 다중분광영상을 이용한 낙동강 Chlorophyll-a 및 녹조발생지수 분석)

  • KIM, Heung-Min;CHOE, Eunyoung;JANG, Seon-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.101-119
    • /
    • 2022
  • Existing algal bloom monitoring is based on field sampling, and there is a limit to understanding the spatial distribution of algal blooms, such as the occurrence and spread of algae, due to local investigations. In this study, algal bloom monitoring was performed using an unmanned aerial vehicle and multispectral sensor, and data on the distribution of algae were provided. For the algal bloom monitoring site, data were acquired from the Mulgeum·Mae-ri site located in the lower part of the Nakdong River, which is the areas with frequent algal bloom. The Chlorophyll-a(Chl-a) value of field-collected samples and the Chl-a estimation formula derived from the correlation between the spectral indices were comparatively analyzed. As a result, among the spectral indices, Maximum Chlorophyll Index (MCI) showed the highest statistical significance(R2=0.91, RMSE=8.1mg/m3). As a result of mapping the distribution of algae by applying MCI to the image of August 05, 2021 with the highest Chl-a concentration, the river area was 1.7km2, the Warning area among the indicators of the algal bloom warning system was 1.03km2(60.56%) and the Algal Bloom area occupied 0.67km2(39.43%). In addition, as a result of calculating the number of occurrence days in the area corresponding to the "Warning" in the images during the study period (July 01, 2021~November 01, 2021), the Chl-a concentration above the "Warning" level was observed in the entire river section from 12 to 19 times. The algal bloom monitoring method proposed in this study can supplement the limitations of the existing algal bloom warning system and can be used to provide information on a point-by-point basis as well as information on a spatial range of the algal bloom warning area.

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.

Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data (GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발)

  • Ha-Yeong Yu;Myoung-Seok Suh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1779-1790
    • /
    • 2023
  • Satellite-based fog detection algorithms are being developed to detect fog in real-time over a wide area, with a focus on the Korean Peninsula (KorPen). The GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI, GK2A) satellite offers an excellent temporal resolution (10 min) and a spatial resolution (500 m), while GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II, GK2B) provides an excellent spatial resolution (250 m) but poor temporal resolution (1 h) with only visible channels. To enhance the fog detection level (10 min, 250 m), we developed a fused GK2AB fog detection algorithm (FDA) of GK2A and GK2B. The GK2AB FDA comprises three main steps. First, the Korea Meteorological Satellite Center's GK2A daytime fog detection algorithm is utilized to detect fog, considering various optical and physical characteristics. In the second step, GK2B data is extrapolated to 10-min intervals by matching GK2A pixels based on the closest time and location when GK2B observes the KorPen. For reflectance, GK2B normalized visible (NVIS) is corrected using GK2A NVIS of the same time, considering the difference in wavelength range and observation geometry. GK2B NVIS is extrapolated at 10-min intervals using the 10-min changes in GK2A NVIS. In the final step, the extrapolated GK2B NVIS, solar zenith angle, and outputs of GK2A FDA are utilized as input data for machine learning (decision tree) to develop the GK2AB FDA, which detects fog at a resolution of 250 m and a 10-min interval based on geographical locations. Six and four cases were used for the training and validation of GK2AB FDA, respectively. Quantitative verification of GK2AB FDA utilized ground observation data on visibility, wind speed, and relative humidity. Compared to GK2A FDA, GK2AB FDA exhibited a fourfold increase in spatial resolution, resulting in more detailed discrimination between fog and non-fog pixels. In general, irrespective of the validation method, the probability of detection (POD) and the Hanssen-Kuiper Skill score (KSS) are high or similar, indicating that it better detects previously undetected fog pixels. However, GK2AB FDA, compared to GK2A FDA, tends to over-detect fog with a higher false alarm ratio and bias.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

Shear strain behaviour due to twin tunnelling adjacent to pile group (군말뚝 기초 하부 병렬터널 굴착 시 전단변형 거동 특성)

  • Subin Kim;Young-Seok Oh;Yong-Joo Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.59-78
    • /
    • 2024
  • In tunnel construction, the stability is evaluated by the settlement of adjacent structures and ground, but the shear strain of the ground is the main factor that determines the failure mechanism of the ground due to the tunnel excavation and the change of the operating load, and can be used to review the stability of the tunnel excavation and to calculate the reinforcement area. In this study, a twin tunnel excavation was simulated on a soft ground in an urban area through a laboratory model test to analyze the behavior of the twin tunnel excavation on the adjacent pile grouped foundation and adjacent ground. Both the displacement and the shear strain of ground were obtained using a close-range photogrammetry during laboratory model test. In addition, two-dimensional finite element numerical analysis was performed based on the model test. The results of a back-analysis showed that the maximum shear strain rate tends to decrease as the horizontal distance between the pillars of the twin tunnel and the vertical distance between the toe of the pile group and the crown of the tunnel were decreased. The impact of the second tunnel on the first tunnel and pile group was decreased as the horizontal distance between the pillars of the twin tunnel was increased. In addition, the vertical distance between the toe of the pile group and the crown of the tunnel had a relatively greater impact on the shear strain results than the horizontal distance of the pillars between the twin tunnels. According to the results of the close-range photogrammetry and numerical analysis, the settlement of adjacent pile group and adjacent ground was measured within the design criteria, but the shear strain of the ground was judged to be outside the range of small strain in all cases and required reinforcement.