• Title/Summary/Keyword: 공간기준 샘플링

Search Result 24, Processing Time 0.023 seconds

Historical Sensor Data Management Using Temporal Information (센서 데이터의 시간 정보를 이용한 이력 정보 관리)

  • Lee, Yang-Koo;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.97-102
    • /
    • 2008
  • A wireless sensor network consists of many sensors that collect and transmit physical or environmental conditions at different locations to a server continuously. Many researches mainly focus on processing continuous queries on real-time data stream. However, they do not concern the problem of storing the historical data, which is mandatory to the historical queries. In this paper, we propose two time-based storage methods to store the sensor data stream and reduce the managed tuples without any loss of information, which lead to the improvement of the accuracy of query results.

  • PDF

4-D Inversion of Geophysical Data Acquired over Dynamically Changing Subsurface Model (시간에 대해 변화하는 지하구조에서 획득한 물리탐사 자료의 역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-122
    • /
    • 2006
  • In the geophysical monitoring to understand the change of subsurface material properties with time, the time-invariant static subsurface model is commonly adopted to reconstruct a time-lapse image. This assumption of static model, however, can be invalid particularly when fluid migrates very quickly in highly permeable medium in the brine injection experiment. In such case, the resultant subsurface images may be severely distorted. In order to alleviate this problem, we develop a new least-squares inversion algorithm under the assumption that the subsurface model will change continuously in time. Instead of sampling a time-space model into numerous space models with a regular time interval, a few reference models in space domain at different times pre-selected are used to describe the subsurface structure continuously changing in time; the material property at a certain space coordinate are assumed to change linearly in time. Consequently, finding a space-time model can be simplified into obtaining several reference space models. In order to stabilize iterative inversion and to calculate meaningful subsurface images varying with time, the regularization along time axis is introduced assuming that the subsurface model will not change significantly during the data acquisition. The performance of the proposed algorithm is demonstrated by the numerical experiments using the synthetic data of crosshole dc resistivity tomography.

  • PDF

Improvement in Inefficient Repetition of Gauss Sieve (Gauss Sieve 반복 동작에서의 비효율성 개선)

  • Byeongho Cheon;Changwon Lee;Chanho Jeon;Seokhie Hong;Suhri Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.223-233
    • /
    • 2023
  • Gauss Sieve is an algorithm for solving SVP and requires exponential time and space complexity. The terminationcondition of the Sieve is determined by the size of the constructed list and the number of collisions related to space complexity. The term 'collision' refers to the state in which the sampled vector is reduced to the vector that is already inthe list. if collisions occur more than a certain number of times, the algorithm terminates. When executing previous algorithms, we noticed that unnecessary operations continued even after the shortest vector was found. This means that the existing termination condition is set larger than necessary. In this paper, after identifying the point where unnecessary operations are repeated, optimization is performed on the number of operations required. The tests are conducted by adjusting the threshold of the collision that becomes the termination condition and the distribution in whichthe sample vector is generated. According to the experiments, the operation that occupies the largest proportion decreased by62.6%. The space and time complexity also decreased by 4.3 and 1.6%, respectively.

Query-Efficient Black-Box Adversarial Attack Methods on Face Recognition Model (얼굴 인식 모델에 대한 질의 효율적인 블랙박스 적대적 공격 방법)

  • Seo, Seong-gwan;Son, Baehoon;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1081-1090
    • /
    • 2022
  • The face recognition model is used for identity recognition of smartphones, providing convenience to many users. As a result, the security review of the DNN model is becoming important, with adversarial attacks present as a well-known vulnerability of the DNN model. Adversarial attacks have evolved to decision-based attack techniques that use only the recognition results of deep learning models to perform attacks. However, existing decision-based attack technique[14] have a problem that requires a large number of queries when generating adversarial examples. In particular, it takes a large number of queries to approximate the gradient. Therefore, in this paper, we propose a method of generating adversarial examples using orthogonal space sampling and dimensionality reduction sampling to avoid wasting queries that are consumed to approximate the gradient of existing decision-based attack technique[14]. Experiments show that our method can reduce the perturbation size of adversarial examples by about 2.4 compared to existing attack technique[14] and increase the attack success rate by 14% compared to existing attack technique[14]. Experimental results demonstrate that the adversarial example generation method proposed in this paper has superior attack performance.

Rotational Prism Stitching Interferometer for High-resolution Surface Testing (고해상도 표면 측정을 위한 회전 프리즘 정합 간섭계)

  • In-Ung Song;Woo-Sung Kwon;Hagyong Khim;Yun-Woo Lee;Jong Ung Lee;Ho-Soon Yang
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.3
    • /
    • pp.117-123
    • /
    • 2023
  • The size of an optical surface can significantly affect the performance of an optical system, and high spatial frequency errors have a greater impact. Therefore, it is crucial to measure the surface figure error with high frequency. To address this, a new method called rotational prism stitching interferometer (RPSI) is proposed in this study. The RPSI is a type of stitching interferometer that enhances spatial resolution, but it differs from conventional stitching interferometers in that it does not require the movement of either the mirror tested or the interferometer itself to obtain sub-aperture interferograms. Instead, the RPSI uses a beam expander and a rotating Dove prism to select particular sub-apertures from the entire aperture. These sub-apertures are then stitched together to obtain a full-aperture result proportional to the square of the beam expander's magnification. The RPSI's effectiveness was demonstrated by measuring a 40 mm diameter spherical mirror using a three-magnification beam expander and comparing the results with those obtained from a commercial interferometer. The RPSI achieved surface testing results with nine times higher sampling density than the interferometer alone, with a small difference of approximately 1 nm RMS.

Panoramic Navigation using Orthogonal Cross Cylinder Mapping and Image-Segmentation Based Environment Modeling (직각 교차 실린더 매핑과 영상 분할 기반 환경 모델링을 이용한 파노라마 네비게이션)

  • 류승택;조청운;윤경현
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.138-148
    • /
    • 2003
  • Orthogonal Cross Cylinder mapping and segmentation based modeling methods have been implemented for constructing the image-based navigation system in this paper. The Orthogonal Cross Cylinder (OCC) is the object expressed by the intersection area that occurs when a cylinder is orthogonal with another. OCC mapping method eliminates the singularity effect caused in the environment maps and shows an almost even amount of area for the environment occupied by a single texel. A full-view image from a fixed point-of-view can be obtained with OCC mapping although it becomes difficult to express another image when the point-of-view has been changed. The OCC map is segmented according to the objects that form the environment and the depth value is set by the characteristics of the classified objects for the segmentation based modeling. This method can easily be implemented on an environment map and makes the environment modeling easier through extracting the depth value by the image segmentation. An environment navigation system with a full-view can be developed with these methods.

Analysis of Optimal Resolution and Number of GCP Chips for Precision Sensor Modeling Efficiency in Satellite Images (농림위성영상 정밀센서모델링 효율성 재고를 위한 최적의 해상도 및 지상기준점 칩 개수 분석)

  • Choi, Hyeon-Gyeong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1445-1462
    • /
    • 2022
  • Compact Advanced Satellite 500-4 (CAS500-4), which is scheduled to be launched in 2025, is a mid-resolution satellite with a 5 m resolution developed for wide-area agriculture and forest observation. To utilize satellite images, it is important to establish a precision sensor model and establish accurate geometric information. Previous research reported that a precision sensor model could be automatically established through the process of matching ground control point (GCP) chips and satellite images. Therefore, to improve the geometric accuracy of satellite images, it is necessary to improve the GCP chip matching performance. This paper proposes an improved GCP chip matching scheme for improved precision sensor modeling of mid-resolution satellite images. When using high-resolution GCP chips for matching against mid-resolution satellite images, there are two major issues: handling the resolution difference between GCP chips and satellite images and finding the optimal quantity of GCP chips. To solve these issues, this study compared and analyzed chip matching performances according to various satellite image upsampling factors and various number of chips. RapidEye images with a resolution of 5m were used as mid-resolution satellite images. GCP chips were prepared from aerial orthographic images with a resolution of 0.25 m and satellite orthogonal images with a resolution of 0.5 m. Accuracy analysis was performed using manually extracted reference points. Experiment results show that upsampling factor of two and three significantly improved sensor model accuracy. They also show that the accuracy was maintained with reduced number of GCP chips of around 100. The results of the study confirmed the possibility of applying high-resolution GCP chips for automated precision sensor modeling of mid-resolution satellite images with improved accuracy. It is expected that the results of this study can be used to establish a precise sensor model for CAS500-4.

Algorithm of Face Region Detection in the TV Color Background Image (TV컬러 배경영상에서 얼굴영역 검출 알고리즘)

  • Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.672-679
    • /
    • 2011
  • In this paper, detection algorithm of face region based on skin color of in the TV images is proposed. In the first, reference image is set to the sampled skin color, and then the extracted of face region is candidated using the Euclidean distance between the pixels of TV image. The eye image is detected by using the mean value and standard deviation of the component forming color difference between Y and C through the conversion of RGB color into CMY color model. Detecting the lips image is calculated by utilizing Q component through the conversion of RGB color model into YIQ color space. The detection of the face region is extracted using basis of knowledge by doing logical calculation of the eye image and lips image. To testify the proposed method, some experiments are performed using front color image down loaded from TV color image. Experimental results showed that face region can be detected in both case of the irrespective location & size of the human face.

Optimal Location Modeling for Elementary Student's Care facility using Public Data (공공데이터를 활용한 초등학생 돌봄시설의 최적입지 선정)

  • Lee, Ji-Won;Kim, Ji-Young;Yu, Ki-Yun;Yang, Sung-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.109-122
    • /
    • 2019
  • The expansion of double-income households is increasing the social interest in child care. In particular, children's entrance into elementary school is considered to be the main cause of women's career break as well as childbirth. This study proposes an optimal location selection method for caring facilities for elementary school students. As a candidate for care facilities, we selected existing child care facilities. We proposed a dual structure evaluation method that considers locational characteristics as well as mathematical optimization when selecting the optimal location. The experiment was conducted in Songpa-gu, Seoul. A total of 36 optimal locations were selected from a total of 258 candidate facilities. First, the evaluation criteria were established using public data, and the primary candidate facilities were selected by ranking the location scores. At this time mesh resampling method was used to integrate various public data into one. Next, the final care facilities were selected using the p-median method. The results chosen are not only the optimal location considering total distance but also satisfy various location criteria considering the characteristics of the care facility. We expect that the proposed method will contribute to public data convergence or utilization and it will be helpful for policy decision when selecting the optimal location for public facilities.

Migration Characteristic Analysis on Red Tide Using GIS (지리정보시스템을 이용한 적조의 이동특성분석)

  • Kim, Jin-Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.257-266
    • /
    • 2007
  • The research on red tide is generally in progress through field work, such as the naked eye and sampling. It was difficult to forecast exactly the course, from appearance of red tide to disappearance. with the established ways of investigation and analysis. Accordingly it is need to analyze environmental factors in time and space, the appearance of red tide and the path of its migration by more objective and scientific methods. In this study, GIS is applied to analyse the space character of red tide and the interpolation of IDW(Inverse Distance Weight) is applied to assume the density distribution of red tide after gather data by using Arc/Info. After IDW interpolation, the sea area occurred over 1,000 cells/ml of red tide density is extracted with CON and SUM Function of Grid Module, and the density of the sea area is accumulated daily. As a result of this study, the distribution condition of red tide is found timely and spacially by applying GIS to the sea area of red tide, the results indicated that the spatial density and the cumulative frequency about the origin of red tide using GIS, the sea area demonstrated that the maximum density and the maximum frequency varied significantly over the Nammyun of Namhae-Is. with the maximum frequency being 49 times. accordingly if data about the areas of red tide will occur from the present are accumulated, the shifting route of red tide occurrence and extinction can be predicted.