• Title/Summary/Keyword: 골-임플란트 계면

Search Result 21, Processing Time 0.026 seconds

Study of heat transfer to the implant-bone interface induced by grinding of occlusal surface of implant gold prosthesis (금 합금 보철물의 교합면 삭제로 인한 임플란트-골 계면으로의 열전달에 관한 연구)

  • Jo, Jae-Young;Kang, Sun-Nyo;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Purpose: The purpose of this study was to analyze temperature change along the implant-bone interface induced by grinding the occlusal surface of implant gold prosthesis and to compare the temperature generated by grinding of prosthesis with different cooling methods. Materials and methods: The experimental gold prostheses were fabricated with dental gold alloy and castable abutment. The prostheses had 3 cylindrical protrusions on the occlusal surface with 1mm in height. Temperature was measured using 16 thermocouple wires attached to the implant fixture surface and the fixture was embedded in an acrylic resin block inside the $37^{\circ}C$ water bath. Cylinders were grinded for a period of 30 second with a low-speed handpiece with green stone point. One cylindrical protrusion was grinded without cooling, the second one was grinded with air blow, and the third one was grinded with water-spray. Results: The mean maximum temperature was measured more than $47^{\circ}C$ of the implant and the maximum temperature was measured at the cervical portion of the implant in the group without cooling. There was statistically significant difference between the group without cooling and the groups with cooling (P<.05). However, there was no significant difference at all portion of implant in the groups with cooling (P>.05). Conclusion: The results of this study support that the grinding of implant gold prosthesis without cooling may damage the peri-implant tissue. The continuous use of air blow and water-spray adjacent to prosthesis during the grinding of implant gold prosthesis may prove to be beneficial for cooling of the implant.

Biocompatibility and Surface Characteristics of (Si,Mn)-HA Coated Ti-Alloy by Plasma Electrolytic Oxidation (PEO법으로 (Si,Mn)-HA 코팅된 치과 임플란트용 Ti 합금의 생체적합성 및 표면특성)

  • Gang, Jeong-In;Son, Mi-Gyeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • 생체재료의 표면은 이식과 동시에 생체계면의 역할을 하게 되어, 일련의 생물학적 반응이 시작되고 진행되는 중요한 장소가 된다. 초기에 생체계면에서 일어나는 단백질 흡착이나 염증반응을 비롯한 생물학적 반응들은 궁극적으로 임플란트의 성패를 좌우할 만큼 중요하다. 골융합을 개선하기 위한 다른 방법으로 생체불활성의 타이타늄 (Ti)과 골조직의 능동적인 반응을 이루기 위해 생체활성 표면을 부여함으로서 계면에서의 골형성 반응을 증진시키는 방법이 이용된다. 생체불활성의 Ti과 Ti합금은 골조직과 직접적인 결합을 이루지 못하므로, 골조직과의 반응을 향상하기 위해 여러 종류의 생체활성 재료를 코팅하는 방법이 연구되어 왔고, 이 중 생체의 변화와 가장 유사한 하이드록시아파타이트 코팅이 가장 대중적인 방법으로 사용되었으며 이는 초기 골형성을 촉진하는 것으로 알려졌다. 치과용 임플란트의 표면형상과 화학조성이 골 융합에 영향을 미치는 가장 중요한 인자이므로 최근의 연구동향은 이들 두 가지 표면특성을 결합함으로서 결과적으로 최적의 골세포반응을 유도하고, 골융합 후 골조직과의 micromechanical interlocking에 의해 임플란트의 안정성에 중요한 역할을 하는 마이크론 단위의 표면조도와 표면 구조를 유지하면서, 부가적으로 골 조직 반응을 능동적으로 개선할 수 있는 생체활성 성분을 부여하여 골 융합에 상승효과를 이루기 위한 표면처리법에 관해 많은 연구가 요구되어지고 있다. 따라서 골을 구하는 원소인 망간과 실리콘으로 치환된 하이드록시아파타이트를 플라즈마 전해 산화법으로 코팅하여 세포와 잘 결합할 수 있는 표면을 제공함으로써 골 융합과 치유기간을 단축시킬 수 있을 것으로 사료된다. 실험방법은 시편은 치과 임플란트 제작 합금인 Ti-6Al-4V ELI disk (grade 5, Timet Co., USA; diameter, 10 mm, thickness, 3 mm)이며, calcium acetate monohydrate, calcium glycerophosphate, manganese(II) acetate tetrahydrate, sodium metasilicate을 설계조건에 따라 혼합 제조된 전해질 용액을 이용하여 플라즈마 전해 산화법으로 표면 코팅을 실시하였다. 각 시편의 플라즈마 전해시 전압은 280V로 인가하였고, 전류밀도는 70mA로 정전류를 공급하여 해당 인가전압 도달 후 3분 동안 정전압 방식을 유지하였다. 코팅된 피막 표면을 주사전자현미경과 X-선 회절분석을 통하여 미세구조 및 결정상을 관찰하였다. 또한 코팅된 표면의 생체활성 평가는 정량적으로 평가하기 위해 동전위시험과 AC 임피던스를 통하여 시행하였다. 분극거동을 확인하기 위해 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하여 구강 내 환경과 유사한 $36.5{\pm}1^{\circ}C$의 0.9 wt.% NaCl에서 실시하였다. 전기화학적 부식 거동은 potentiodynamic 방법으로 조사하였고 인가전위는 -1500 mV에서 2000 mV까지 분당 1.67 mV/min 의 주사속도로 인가하여 시험을 수행하였다. 임피던스 측정은 potentiostat (Model PARSTAT 2273, EG&G, USA)을 이용하였으며, 측정에 사용한 주파수 영역은 10mHz ~ 100kHz 까지의 범위로 하여 조사하였고 ZSimWin(Princeton applied Research, USA) 소프트웨어를 사용하여 용액의 저항, 분극 저항 값을 산출하였다. 망간의 함량이 증가할수록 불규칙한 기공을 보였으며, 실리콘은 $TiO_2$ 산화막 형성을 저해하는 경향을 확인할 수 있었다. 단독으로 표면을 처리한 경우보다 두 가지 원소를 이용해 복합 표면처리를 시행한 경우가 내식성이 좋아 임플란트과의 골 유착에 긍정적인 영향을 미칠 것으로 사료된다.

  • PDF

Effect of Implant Length on the Immediate Loading at the Anterior Maxilla (즉시하중시 상악 전치부에 식립된 임플란트 길이 변화에 따른 응력 분포의 삼차원 유한요소 연구)

  • Lee, Joon-Seok;Kim, Myung-Joo;Kwon, Ho-Beom;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.255-265
    • /
    • 2009
  • Recently many studies have been published on application of immediate loaded implants. However, the immediate loading protocol has not been well documented. The purpose of the present study was to evaluate the stress distribution between bone-implant interfaces and the effect of implant length in the anterior maxilla using 3 dimensional finite element analyses. The diameter 4.0 mm threaded type implants with different length(8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) were used in this study. The bone quality of anterior maxillary bone block was assumed to D3 bone. Bone-implant interfaces of immediately loaded implant were constructed using a contact element for simulating the non osseointegration status. For simplification of all the processing procedures, all of the material assumed to be homogenous, isotropic, and linearly elastic. The 178 N of static force was applied on the middle of the palatoincisal line angle of the abutment with $120^{\circ}$ angle to the long axis of abutment. Maximum von Mises stress were concentrated on the labial cortical bone of the implant neck area, especially at the cortical-cancellous bone interfaces. Compared the different length, highest peak stress value was observed at the 8.5 mm implants and the results indicated a tendency towards favorable stress distribution on the bone, when the length was increased. Presence of cortical bone was very important to immediate loading, and it appears that implants of a length more than 13 mm are preferable for immediate loading at the anterior maxilla.

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

Combined effects of rhBMP-2 and rhVEGF coated onto implants on osseointegration: pilot study (양극산화 임플란트 표면에 적용된 골형성단백질과 혈관내피세포성장인자가 골유착에 미치는 영향: 예비연구)

  • Huh, Jung-Bo;Yun, Mi-Jung;Jeong, Chang-Mo;Shin, Sang-Wan;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.2
    • /
    • pp.82-89
    • /
    • 2013
  • Purpose: The present study is aimed to evaluate the combined effect of recombinant human bone morphogenetic protein 2 (rhBMP-2) and recombinant human vascular endothelial growth factor (rhVEGF) coated onto anodized implants on osseointeration. Materials and methods: Six New Zealand white rabbit were used in this study. Each animal received 4 implants that were either coated with rhBMP-2 and rhVEGF (Study group) or anodized implant (Control group) in both tibia. This was performed using a randomized split-mouth design. A total 24 implants were used. The implant stability quotient (ISQ) value using resonance frequency analyser and removal torque (RTQ) measurement were investigated at 2 and 8 weeks. The t-test was used for statistical analysis (${\alpha}$=.05). Results: Control and study group showed good osseointegration at 8 weeks. The ISQ and RTQ values of study group were significant compared with the control group at 8 weeks (P<.05). However, No statistical significance was observed at 2 weeks (P>.05). Conclusion: It was concluded that rhBMP-2 with rhVEGF coated onto anodized implants can induce better osseointegration at late healing period.

Histomorphometry and Stability Analysis of Loaded Implants with two Different Surface Conditions in Beagle Dogs (하중을 가한 두 가지 표면의 임플란트에 관한 조직형태학적 분석 및 안정성 분석 (비글견을 이용한 연구))

  • Kim, Sang-Mi;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.337-349
    • /
    • 2008
  • Despite an improved bone reactions of Mg-incorporated implants in the animals, little yet has been carried out by the experimental investigations in functional loading conditions. This study investigated the clinical and histologic parameters of osseointegrated Mg-incorporated implants in delayed loading conditions. A total of 36 solid screw implants (diameter 3.75 mm, length 10mm) were placed in the mandibles of 6 beagle dogs. Test groups included 18 Mg-incorporated implants. Turned titanium Implants served as control. Gold crowns were inserted 3 months. Radiographic assessments and stabilitytests were performed at the time of fixture installation, $2^{nd}$ stage surgery, 1 and 3 months after loading. Histological observations and morphometrical measurements were also performed. Of 36 implants, 32 displayed no discernible mobility, corresponding to successful clinical function. There was no statistically significant difference between test implants and controls in marginal bone levels (p=0.413) and RFA values. The mean BIC % in the Mg-implants was $54.4{\pm}20.2%$. The mean BIC % in the turned implant was $48.9{\pm}8.0%$. These differences between the Mg-implant and control implant were not statistically significant (P=0.264). In the limitation of this study, bone-to-implant contact (BIC) and bone area of Mg-incorporated oxidized implant were similar to machine-turned implant. The stability analysis showed no significantly different ISQ values and marginal bone loss between two groups. Considering time-dependent bone responses of Mg-implant, it seems that Mg-implants enhanced bone responses in early loading conditions and osseointegrated similarly to cp Ti implants in delayed loading conditions. However, further investigations are necessary to obtain long-term bone response of the Mg-implant in human.

Influence of Implant Designs on Initial Stability (임플란트의 형태가 초기 안정성에 미치는 영향)

  • Cho, Jae-Myoung;Kim, Chang-Seop;Yun, Mi-Jung;Jeong, Chang-Mo;Seo, Seung-U
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • An undisturbed healing process without micromotion at the implant-bone interface is essential for achievement of osseointegration of dental implant. Therefore, initial stability was advocated as prerequisite for successful clinical outcome. Adequate bone quality and quantity were important to achieve initial stability and to prevent early failures. However there were few published data available regarding the effect of design change in implant geometry on initial stability of the implants. The purpose of the current study was to assess the initial stability of various designs of implants when placed into artificial bone materials of varying qualities and shapes of insertion holes. Within the scope of this study, the following results were drawn. Bone quality was major importance to achieve initial stability. Initial stability was higher on GS II which had additional design feature of double thread. With a tapered design of implant such as GS III showed a higher initial stability than straight one. An insertion hole with the similar shape of implant would lead to reduce a compression force on cortical bone and enhance a bone anchorage on cancellous bone.

Investigation of osseointegration according to the healing time after having iatrogenic mobility of implant fixtures (임플란트 고정체의 인위적 비틀림 후 시간 경과에 따른 골재유착 반응에 관한 연구)

  • Hwang, Yun-Jin;Cho, Jin-Hyun;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.308-314
    • /
    • 2010
  • Purpose: The purpose of this study is to analyze the change in re-osseointegration over time and bone reaction at the interface between implant fixture and the surface of the bone, after destroying re-osseointegration by distorting the bone-implant interface artificially. Materials and methods: Experimental implant fixtures (cp titanium, ${\phi}3.75\;mm{\times}4\;mm$) which didn't have surface treatment were produced. Two or three fixtures were implanted on both tibias of twelve female rabbits (New Zealand white, more than 3.5 kg). Then after six weeks, removal torque (RT) was measured and the results were recorded as the first measurement values. The fixtures were submerged again to get reosseointegration between the bone and fixture. To identify the change in re-osseointegration of submerged fixtures over time, six groups had the healing time for four days (group I), one week (group II), two weeks (group III), three weeks (group IV), four weeks (group V) and five weeks (group VI), and then the secondary removal torque was measured for each group. To identify the bone formation under fluorescent light, tetracycline (15 mg/kg, IM) were treated on the rabbits of each group. After the second measurement, the rabbits were sacrificed, and 16 slides were made, two or three for each group. The slides were observed under the fluorescent light with light microscope. To find out the change in the secondary removal torque over the primary removal torque in progress of time, the averages of the increase rate of the primary and secondary torque removal force were calculated. Then, to find out if there were any critical differences between the primary removal torque and the secondary removal torque in each group and among the groups, the results were analyzed statistically by paired t- test, one-way ANOVA, and Duncan's Multiple Range Test. Results: In group I and II, secondary removal torque decreased, especially in group I. In group III, IV, V, and VI, secondary removal torque increased critically. Comparing the differences among the groups, the critical difference was shown between group I, II and group III, IV, V, VI. Mineralization at the interface between the bone and implant fixture was identified from the first week, and bone formation was shown more clearly from the second week. Conclusion: If the implant fixture remains unforced for a certain period of time after the fixture has had iatrogenic mobility, re-osseointegration occurs at the surface of the fixture, and for tibias of rabbits, higher re-osseointegration was obtained within two weeks.

ON THE INTERFACE BETWEEN TITANIUM METAL AND BONE TISSUE -Ti-ion leakage from bone and implant interface(1)- (티타늄금속과 골조직의 계면에 관한 연구 -골과 임플란트 계면에서의 Ti-ion의 거동에 대하여(1)-)

  • Cho, Sung-Am;Jo, Kyung-Hun;Sur, Jo-Ryung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.354-357
    • /
    • 1995
  • The secondary ion of titanium from commercially pur titanium implant which installed at Rabbit tibia. Was analyzed by Secondary lon Mass Spectroscopy. And we detected about 3476 ppm ion from $10-50{\mu}m$ distance from interface.

  • PDF

On the osseointegration of zirconia and titanium implants installed at defect site filled with xenograft material (이종골 이식을 동반한 지르코니아와 타이타늄 임플란트의 골유착에 관한 연구)

  • Kim, Sung-Won;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Purpose: The purpose of this study was to compare zirconia implants with titanium implants from the view point of biomechanical stability and histologic response on osseointegration when those were placed with xenograft materials. Materials and methods: Specimens were divided into two groups; the control group was experimented with eighteen titanium implants which had anodized surface and the experimental group was experimented with eighteen sandblasted zirconia (Y-TZP) implants. At the tibias of six pigs, implants were installed into bone defect sites prepared surgically and treated with resorbable membranes and bovine bone. Two pigs were sacrificed after 1, 4 and 12 weeks respectively. Each implant site was sampled and processed for histologic and histomorphometric analysis. The stability of implants was evaluated with a $Periotest^{(R)}$. And the interfaces between bone and the implant were observed with a scanning electron microscope. Results: In stability analysis there was no significant difference between Periotest values of the control group and the experimental group. In histologic analysis with a light microscope after 4 weeks, there was new bone formation with the resorption of bovine bone and the active synthesis of osteoblasts in both groups. In bone-implant contact percentage there was significant difference between both groups (P<.05). In bone area percentage there was no significant difference between both groups. In analysis of both groups with a scanning electron microscope there was a gap between bone and a surface at 4 weeks and it was filled up with bone formed newly at 12 weeks. Conclusion: When accompanied by xenograft using membrane, bone to implant contact percentage of zirconia implants used in this experiment was significantly less than that of the titanium implants by surface treatment of anodic oxidation. So, it is considered that the improvement of zirconia implant is needed through ongoing research on surface treatment methods for its practical use.