• Title/Summary/Keyword: 골재의 입형

Search Result 36, Processing Time 0.028 seconds

Basic Characteristics of the Concrete using Recycled Coarse Aggregates Produced by a Rolling Crusher (회전형 마쇄기에 의해 생산된 순환 굵은골재를 사용한 콘크리트의 기초적 특성)

  • Song, Ri-Fan;Baek, Dae-Hyun;Son, Geun-Seong;Shin, Young-In;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.249-250
    • /
    • 2010
  • This study analyzes the basic characteristics of the concrete using recycled coarse aggregates produced by using a rotary crusher and compares it to that of using a cone crusher. As a result, the recycled aggregate produced by using the rotary crusher represents more excellent results in fluidity and compressive strength according to the increase in the replacement rate of recycled aggregates than that of using the cone crusher. It can be analyzed that it was due to the fact that the particle shape of the recycled aggregate produced by using the rotary crusher showed round figures relatively and that leaded to reduce friction force and remove lots of grouted mortar caused by its wearing.

  • PDF

Influence of Fine Aggregate Kinds on Fundamental Properties of Cement Mortar (잔골재 종류변화가 시멘트 모르터의 기초적 특성에 미치는 영향)

  • Kim, Seong-Hwan;Pei, Chang-Chun;Song, Seung-Heon;Cha, Cheon-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.85-88
    • /
    • 2006
  • This study investigated influence of fine aggregate types on fundamental properties of cement mortar. Test showed that concrete using lime stone crushed fine aggregate(L) exhibited the most favorable fluidity due to grain shape and particle distribution, and next was blending aggregate miting L and G, blending aggregate mixing L and N, granite crushed fine aggregate(G), natural fine aggregate(N) in an order. Concrete using N had the highest air content and L was the smallest value because of the effective filling performance by continuos particle distribution. Compressive, tensile and flexural strength of all concrete using L had the highest value due to the smallest value of air content. It is also found that concrete using L resulted in decrease of drying shrinkage length change ratio.

  • PDF

Evaluation of Rutting Behavior of Hot Mix Asphalt using Slag and Waste Foundry Sand as Asphalt Paving Materials (슬래그와 폐주물사를 이용한 아스팔트 혼합물의 소성변형특성에 관한 연구)

  • Lee, Kwan-Ho;Cho, Jae-Yoon;Jeon, Joo-Yong
    • 한국도로학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.89-92
    • /
    • 2002
  • The objective of this research is to evaluate engineering properties of recycled aggregates, slag as coarse & fine aggregate and waste foundry sand(WFS) as fine aggregate, in hot mix asphalt(HMA). In this research, soundness, gradation and particle analysis, abrasion, specific gravity and absorption test were carried out. The optimum asphalt binder content(OAC) for various HMA combinations of recycled aggregate was determined by Marshall Mix Design. The ranges determined is between 7.2% and 7.5%. Indirect tensile test, resilient modulus test, creep test were carried out for characterization of rutting behavior of various combination of HMA. Judging from the limited tests, the HMA with recycled aggregates is not as good rutting resistance as the HMA with common aggregates. After finishing the Wheel tracking test, the application or feasibility for the use of recycled aggregate as asphalt paving material will be determined.

  • PDF

Experimental Study on Physical and Mechanical Properties of Concrete with fine Waste Glass (잔골재로 폐유리를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 박승범;조청휘;김정환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.184-191
    • /
    • 2001
  • Recently, as industrialization is rapidly growing and the standard of life is rising, the quantities of waste glasses have been hastily increased and most of them are not recycled but abandoned. It cause some problems such as the waste of natural resources and environmental pollution. Therefore, this study was conducted basic experimental research to analyze the possibilities of recycling of waste glasses(crushed waste glasses outbreaking from our country such as amber, emerald-green, flint and mixed) as fine aggregates for concrete. Test results of fresh concrete, slump and compacting factors decrease because grain shape is angular and air content increase due to involving small size particles so much in waste glasses. Also compressive, tensile and flexural strengths decrease with increase of the content of waste glasses. In conclusion, the content of waste glasses below 30% is reasonable and usage of pertinent admixture is necessary to obtain workability and air content.

Influences of Grading and Grade Shape in Aggregates on the Strength and Absorption of Cement Mortar Products (골재의 입도 및 입형이 제품용 시멘트 모르타르의 강도 및 흡수율에 미치는 영향)

  • 한천구;신병철;김기철;이상태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • The quality of cement mortar products largely depends on various work conditions, specially on the grading and grade shape of aggregates. However, the effect of grading and grade shape on the quality is not considered by both KS codes and production processes, resulting in the increase of the possibility of quality degradation. The objective of this study was to investigate the effect of grading and grade shape on the strength and absorption characteristics of cement mortar products. Flexural and compressive strength increased with the increase of fineness modulus and W/C. The strength increase was measured larger with river sand than with crushed sand. Absorption tended to decrease with the increase of fineness modulus and W/C, but did not affected by the source of sand.

The Effects of Recycled Aggregate Shape on Compressive Strength and Slump of Recycled Concrete (재생골재 입형이 재생골재콘크리트의 압축강도와 슬럼프에 미치는 영향)

  • Jeong, Ji-Yong;Shim, Jong-Woo;Lee, Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.97-100
    • /
    • 2006
  • The efforts have improved the absorbtion that in order to high the quality of recycled aggregates, and the shape. For the shape of recycled aggregates, the shape of usually aggregates can affect the strength of concrete in an indirect way. So that, in the study, effects is investigated the shape of recycled aggregates that affects the compressive strength and slump. In the result, the a improved shape have a beneficial effect on compressive strength and slump for of a high quality recycled aggregate, and these appear a larger effects in unit water ; $175kg/m^3$ or specified strength ; 24MPa.

  • PDF

The Effect on the Properties of Concrete by Fine Aggregate Fineness Modulus and Grain Shape of Coarse Aggregate (잔골재 조립율 및 굵은골재 입형이 콘크리트의 특성에 미치는 영향)

  • 정용욱;윤용호;이승한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.102-105
    • /
    • 2003
  • The purpose of this study is to examine the influence of the flowability and the compressive strength of concrete after the improving of grain shape of the coarse aggregate and fine aggregate fineness modulus. According to the experimental results, the coarse aggregate after improvement of grain shape it lead to be down by 6% fine aggregate ratio, from 47% to 41%. The 0.5% increase of fine aggregate fineness modulus lead to 3% increase of concrete slump, and 1% reduction of concrete air content. While compressive strength on fine aggregate fineness modulus, it was increased until fineness modulus 3.0, but after it reached by 3.5 it was decreased. The compressive strength of the coarse aggregate after improving the grain shape was decreased by 6% due to loss of the adhesion of cement paste.

  • PDF

A study on the Effect of Aggregate Particle Shape on Property of Concrete (콘크리트용 부순 굵은 골재의 입형이 콘크리트의 물리적 성질에 미치는 영향에 관한 연구)

  • Seo Ki Won;Lee Wook Jae;Kim Hag Youn;Kim Nam Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.209-212
    • /
    • 2004
  • Recent economic development caused a vast use of mineral resources in Korea. Consequently, a supply of poor quality course aggregate (poor particle shape as well as poor gradation) in construction material become a social problem. In this study, an effect of aggregate particle shape on property of concrete was evaluated. The flat and elongation ratio of crushed aggregate was controled to 8, 15, 25, 35, and $47\%$ in order to evaluate fresh concrete behavior as well as physical properties in hardened concrete. Test result shows a poor aggregate particle shape cause a significant increase in entrapped air in fresh concrete, while no significant effect on hardened concrete property, such as strength as well as stiffness. This increase in entrapped air, however, believed to cause a significant decrease in concrete durability.

  • PDF

Applicability of Ferro-nickel Slag Sand for Dry Mortar in Floor (페로니켈슬래그 잔골재의 바닥용 건조모르타르 적용성 평가)

  • Cho, Bong-Suk;Kim, Won-Ki;Hwang, Yin-Seong;Koo, Kyung-Mo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Fine aggregate made of ferronickel slag(FNS) is similar to natural fine aggregates and is used in concrete structures both domestically and abroad, but its applications and research areas are limited. In this research, in order to expand the availability of FNS and improve the performance of cement mortar products, the applicability of FNS on dry mortar for floor was examined. Experimental results show that FNS improves flow of cement mortar because it has low absorption rate, spherical shape, and glassy surface. Also, the high stiffness of the FNS aggregate itself is considered to contribute to the improvement of cement mortar quality such as crack reduction by improving the compressive strength and shrinkage reducing. In addition, when FNS fine aggregate is applied, it was possible to secure the impact sound insulation performance equal to or higher than that of mortar using natural fine aggregate.

The Strength and Length Change Properties of Recycled Aggregate Concrete(RAC) by Compressive Strength Levels (압축강도 수준별 순환골재 콘크리트의 강도와 길이변화 특성)

  • Lee, Bong-Chun;Lee, Jun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.307-312
    • /
    • 2015
  • This paper addresses mechanical properties and length change performance of the recycled aggregate concretes(RAC) in which natural coarse was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Physical/Mechanical properties of RAC were tested for slump test, compressive strength, and length change. The test results indicated that the workability of RC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. However, the length change ratio by the RCA replacement ratios increased regardless of compressive strength levels. At 20 MPa level, the length change ratio was 8~40% which was much higher than that of 4~17% at both 35 and 50 MPa levels. Therefore, it was considered that such admixture addition preventing dry shrinkage is required in order to improve the properties of the RAC at 20 MPa level.