DOI QR코드

DOI QR Code

Applicability of Ferro-nickel Slag Sand for Dry Mortar in Floor

페로니켈슬래그 잔골재의 바닥용 건조모르타르 적용성 평가

  • Cho, Bong-Suk (Research Institute of Industrial Science and Technology) ;
  • Kim, Won-Ki (Construction Material Research Center, Asiacement Corp.) ;
  • Hwang, Yin-Seong (Construction Material Research Center, Asiacement Corp.) ;
  • Koo, Kyung-Mo (Construction Material Research Center, Asiacement Corp.)
  • Received : 2018.08.22
  • Accepted : 2019.01.23
  • Published : 2019.04.20

Abstract

Fine aggregate made of ferronickel slag(FNS) is similar to natural fine aggregates and is used in concrete structures both domestically and abroad, but its applications and research areas are limited. In this research, in order to expand the availability of FNS and improve the performance of cement mortar products, the applicability of FNS on dry mortar for floor was examined. Experimental results show that FNS improves flow of cement mortar because it has low absorption rate, spherical shape, and glassy surface. Also, the high stiffness of the FNS aggregate itself is considered to contribute to the improvement of cement mortar quality such as crack reduction by improving the compressive strength and shrinkage reducing. In addition, when FNS fine aggregate is applied, it was possible to secure the impact sound insulation performance equal to or higher than that of mortar using natural fine aggregate.

페로니켈슬래그 잔골재는 천연 잔골재와 유사한 특성이 있어 국내 외적으로 콘크리트 구조물에 사용되고 있으나 그 용도와 연구의 영역이 한정적이다. 이에 본 연구에서는 FNS의 활용성 확대와 모르타르제품의 성능개선을 목적으로 바닥용 건조모르타르에 대한 FNS의 적용성을 검토하고자 하였다. 실험 결과, FNS는 흡수율이 낮고 구형의 입형이며 표면이 유리질 피막의 특성이 있어 모르타르의 플로을 향상시켰다. 또한 골재 자체의 높은 강성은 몰탈 압축강도의 향상 및 수축저감 효과를 나타내어 균열저감 등의 품질향상에 기여할 것으로 판단된다. 뿐만 아니라 천연 잔골재를 사용한 모르타르와 비교하여 FNS를 적용하는 경우 동등수준 이상의 충격음 차단성능을 확보할 수 있었다.

Keywords

GCSGBX_2019_v19n2_105_f0001.png 이미지

Figure 2. Particle size distributions of FNS and the upper and lower limits of KS F 2527

GCSGBX_2019_v19n2_105_f0002.png 이미지

Figure 3. Grain refining of FNS

GCSGBX_2019_v19n2_105_f0003.png 이미지

Figure 4. Grain shape of FNS (SEM image)

GCSGBX_2019_v19n2_105_f0004.png 이미지

Figure 5. Flow of mortar with FNS

GCSGBX_2019_v19n2_105_f0005.png 이미지

Figure 7. Compressive strength of mortar with FNS

GCSGBX_2019_v19n2_105_f0006.png 이미지

Figure 8. Drying shrinkage of mortar with FNS

GCSGBX_2019_v19n2_105_f0007.png 이미지

Figure 6. Unit weight of mortar with FNS

GCSGBX_2019_v19n2_105_f0008.png 이미지

Figure 9. Expansion of mortar with FNS

GCSGBX_2019_v19n2_105_f0009.png 이미지

Figure 10. Production process of mock-up members

GCSGBX_2019_v19n2_105_f0010.png 이미지

Figure 11. Standard impact sound inslation of floors

GCSGBX_2019_v19n2_105_f0011.png 이미지

Figure 12. Compressive strength of mortar (Plain and FNS)

GCSGBX_2019_v19n2_105_f0012.png 이미지

Figure 13. Drying shrinkage of mock-up member

GCSGBX_2019_v19n2_105_f0013.png 이미지

Figure 14. Impact sound of mock-up member

GCSGBX_2019_v19n2_105_f0014.png 이미지

Figure 1. Potential reactivity of aggregates (Chemical Method)

Table 3. Mix design of mortar (Plain)

GCSGBX_2019_v19n2_105_t0003.png 이미지

Table 4. Experimental plan

GCSGBX_2019_v19n2_105_t0004.png 이미지

Table 5. Experimental plan and mix design of mortar (Mock-up)

GCSGBX_2019_v19n2_105_t0005.png 이미지

Table 1. Chemical composition of FNS

GCSGBX_2019_v19n2_105_t0006.png 이미지

Table 2. Physical properties of FNS

GCSGBX_2019_v19n2_105_t0007.png 이미지

References

  1. Saha AK, Sarker PK. Compressive strength of mortar containing ferronickel slag as replacement of natural sand. Procedia Engineering. 2017 Feb;171:689-94. https://doi.org/10.1016/j.proeng.2017.01.410
  2. Saha AK, Sarker PK. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: mechanical properties and leaching study. Journal of Cleaner Production. 2017 Jun;162:438-48. https://doi.org/10.1016/j.jclepro.2017.06.035
  3. Togawa K, Shoya M, Kokubu K. Characteristics of bleeding, freeze-thaw resistance and watertightness of concrete with ferro-nickel slag fine aggregate. Journal of the Society of Materials Science. 1996 Jan;45(1):101-9. https://doi.org/10.2472/jsms.45.101
  4. Shoya M, Aba M, Tsukinaga Y, Tokuhashi K. Frost resistance and air void system of self-compacting concrete incorporating slag as a fine aggregate. ACI Special Publication. 2003 Jun:212:1093-108.
  5. Saha AK, Sarker PK. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortar. Construction and Building Materials. 2016 Jul;123:135-42. https://doi.org/10.1016/j.conbuildmat.2016.06.144
  6. Fidancevska E, Vassilev V, Milosevski M, Parvanov S, Milosevski D, Aljihmani L. Composites based on industrial wastes III: Production of composites of Fe-Ni slag and waste glass. Journal of the University of Chemical Technology and Metallurgy. 2007 Jul;42(3):285-90.
  7. Katsiotis NS, Tsakiridis PE, Velissariou D, Katsiotis MS, Alhassan SM, Beazi M. Utilization of ferronickel slag as additive in portland cement: A hydration leaching study. Waste and Biomass Valorization. 2015 Apr;6(2):177-89. https://doi.org/10.1007/s12649-015-9346-7
  8. Seo DM, Kim YU, Kim TS, Kim DB, Choi JH, Choi SJ. Evaluation of the flowability and strength of mortar by replacement ratio of ferro-nickel slag sand. Proceeding of Korea Concrete Institute; 2013 May 16; Yeosu, Korea. Seoul (Korea): Korea Concrete Institute; 2016. p. 591-2.
  9. Kim HS, Choi SW, Lee KM, Choi SJ. Compressive strength properties of stream-cured concrete using ferronickel slag fine aggregate. Proceeding of Korea Concrete Institute; 2015 May 14; Gwangju, Korea. Seoul (Korea): Korea Concrete Institute; 2015. p. 541-2.
  10. Cho BS, Lee HH, Choi YW, Park DC, Choi YC. A study on performance of concrete using feni slag aggregate. Proceeding of Korea Concrete Institute; 2014 Oct 16; Muchangpo, Korea. Seoul (Korea): Korea Concrete Institute; 2014. p. 583-4.
  11. Kim DB, Min SH, Kim JH, Ban JM, Choi SJ. Evaluation of fluidity and compressive strength of mortar bt grading variation of ferro-nickel slag sand. Proceeding of Korea Institute of Building Construction; 2017 May 11; Gyeongju, Korea. Seoul (Korea): Korea Institute of Building Construction; 2017. p. 206-7.
  12. Kim YU, Kim TS, Seo DM, Kim SJ, Han JM, Choi SJ. Fluidity and strength property of mortar using ferro-nickel salg sand by mineral admixtrue replacement ratio. Proceeding of Korea Concrete Institute; 2016 May 12; Yeosu, Korea. Seoul (Korea): Korea Concrete Institute; 2016. p. 217-8.
  13. Kim WJ, Hong SB, Kim PS, Cho BS. Research on the concrete using ferro-nickel slag for fine aggregate. Proceeding of Korea Concrete Institute; 2012 May 3; Gyeongju, Korea. Seoul (Korea): Korea Concrete Institute; 2012. p. 49-50.
  14. Kim HS, Lee SH, Sun JS, Kim JM. A physical properties of lightweight foamed concrete according to lightweight aggregate types and foaming agent types. Journal of the Korea Concrete Institute. 2016 Aug;28(4):435-44. https://doi.org/10.4334/JKCI.2016.28.4.435
  15. Cho BS, Lee HS, Koo KM, Hwang YS, Seo SS, Choi YC. A study on the chemical properties of feni slag fine aggregat. Proceeding of Korea Concrete Institute; 2017 Nov 2; Andong, Korea. Seoul (Korea): Korea Concrete Institute; 2017. p. 465-6.