• Title/Summary/Keyword: 곡관부

Search Result 61, Processing Time 0.031 seconds

Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (I) - Cross Rib Arrangements - (각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (I) - 엇갈린 요철 배열 -)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.873-881
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached crossly in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2mm(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (pie) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of cross rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with cross NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with cross NP or PP type ribs.

Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (II) - Parallel Rib Arrangements - (각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (II) - 평행한 요철 배열 -)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.882-890
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached parallel in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2m(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of parallel rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with parallel NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with parallel NN or PN type ribs.

Elastic-Plastic Fracture Mechanics Analyses for Circumferential Part-Through Surface Cracks at the Interface Between Elbows and Pipes (직관과 곡관의 경계 용접부에 존재하는 원주방향 표면균열에 대한 탄소성 파괴역학 해석)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Jong-Sung;Jin, Tae-Eun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.710-717
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions fur straight pipes.

Heat/Mass Transfer Characteristics in A Rotating Duct with $180^{\circ}$ Turn ($180^{\circ}$ 곡관부를 가지는 회전 덕트에서의 열/물질전달 특성)

  • Won, Chung-Ho;Lee, Sei-Young;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a rotating two-pass rectangular duct. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The objective of this study is to determine the effects of turning geometry with rotation for 0.0$\leq$Ro$\leq$0.24. The results reveal that the sharp-turn corner has the larger pressure drop and lower heat transfer in the post-turn region than those of the round-turn corner. The strong secondary flow enhances heat transfer for the round-turn corner. Coriolis force induced by the rotation pushes the high momentum core flow toward the trailing wall in the first passage with radially outward flow and toward the leading wall in the second passage with radially inward flow. Consequently, the high heat transfer rates are generated on the trailing surface and the leading surface in the first and second passage, respectively. However, the strong secondary flow due to the turning dominates the flow pattern in the second passage, thus the heat transfer differences between the leading and trailing surfaces are small with the rotation.

An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking (국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구)

  • Cheung, Jin Hwan;Kim, In Tae;Choi, Seock Jin;Choi, Hyung Suk;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.647-657
    • /
    • 2012
  • Although nuclear power plant piping system is designed conforming to design specifications, the piping systems are deteriorated with increase in service life. In this study, monotonic and cyclic loading tests were carried out on TP316 stainless steel pipe specimens, and the effect of local wall thinning and cracking on failure behavior was investigated. In the tests, 0%, 35% and 75% wall thinning and cracking of initial thickness were artificially introduced to inside elbow and straight pipe specimens, and internal pressures of 20MPa were applied to simulate real operation condition. From the test results, the effect of local wall thinning and cracking on failure mode, ultimate load, number of cycle and strain energy was presented, and maximum bending moment was compared with allowable bending moment calculated by ASME code.

Numerical Study for Flow Uniformity in Selective Catalytic Reduction (SCR) (SCR 반응기 유동 균일화를 위한 수치적 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Lee, Gang-Woo;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.151-154
    • /
    • 2011
  • $NO_x$ 제어 기술로는 크게 연소 전 탈질, 연소 개선 및 연소 후 탈질 기술로 구분할 수 있으며, 연소 후 탈질 기술에 속하는 SCR은 촉매를 사용하여 $NO_x$를 환원하는 대표적인 배연탈질기술이다. SCR의 $NO_x$ 저감 성능은 촉매 요인(촉매 구성물질, 형태, 공간속도 등)과 배가스의 온도, 유속 분포, 공정 운전 조건 등의 다양한 인자에 의해 좌우되는데 특히, 촉매층으로 유입되는 유동의 균일도는 가장 중요한 요소가 된다. 유동이 균일하지 않을 경우 촉매 전단에 편류가 발생하게 될 것이며 일정 촉매만 사용하게 되어 촉매 사용주기 감소 및 SCR 성능 저하를 초래할 수 있기 때문이다. 본 연구에서는 3차원 수치 해석 기법을 이용하여 설계 초기의 SCR 반응기 내 유동 특성을 모사하여 기류 균일도 여부를 확인하고, SCR 내 유동 균일도를 최적화시키기 위한 설계를 목적으로 설치하는 가이드 베인과 배플, 다공판이 반응기 내부 유동 및 촉매층의 기류 균일도에 미치는 영향에 대하여 연구를 수행하였다. 그 결과, 유동 개선을 위해 인입 덕트 곡관부에 가이드 베인을 설치하여 처리가스를 적절하게 배분시키고, 반응기 상단에 3단 배플을 설치한 결과 반응기 내부 유동의 편류 개선에 매우 효과적임을 알 수 있었다. 또한 다공판을 예비 촉매층 하단부 위치에 추가로 설치함에 따라 유동을 한번 더 완충시킬 수 있어 기류 균일도가 매우 양호해짐을 알 수 있었다.

  • PDF

Numerical Study of Forced Convection Nanofluid in a U-Bend Tube (U-밴드 관 내부 나노유체의 강제대류에 관한 수치적 연구)

  • Jo, Sung-Won;Choi, Hoon-Ki;Park, Yong-Gap
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.141-150
    • /
    • 2022
  • Fluid flow and thermal characteristics of laminar nanofluid(water/Al2O3) flow in a circular U-bend tube have been studied numerically. In this study, the effect of Reynolds number and the solid volume fraction and the impact of the U-bend on the flow field, the heat transfer and pressure drop was investigated. Comparisons with previously published experimental works on horizontal curved tubes show good agreements between the results. Heat transfer coefficient increases by increasing the solid volume fraction of nanoparticles as well as Reynolds number. Also, the presence of the secondary flow in the curve plays a key role in increasing the average heat transfer coefficient. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles volume fraction.

Development and Finity Element Analysis of the Finishing System Using Rotationg Manetic Field (회전자력연마시스템의 개발과 유한요소 해석에 관한 연구)

  • 최민석;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.136-141
    • /
    • 1993
  • 진공챔버,위생튜브등 정밀한 내면을 필요로 하는 경우 표면거칠기를 향상시키기 위한 방법으로 전해가공 및 수작업을 하는 경우가 대부분인데 이는 가공비가 비씨고 다듬질 시간이 많이 걸리는 등 매우 비경제적이다. 더구나 길이가 긴 관이나 구부러진 관의 내면은 기계적으로 다듬질이 매우 어렵다. 그러나 최근에 개발된 전자기장을 이용한 자력 연마가공법은 기존의 기계적인 가공법과는 달리 실제 가공을 행하는 공구부와 ㅣㅇ를 구동하는 구동부 사이에 공극을 허용하기 때문에 이를 이용하여 회전이 불가능한 곡관의 내면다듬질을 가능하게 하였다. 지금까지 연구들은 단순히 전자석 및 전원으로 이루어진 수동가공 시스템으로서 가공공정 자체의 특성파악에 집중되어 왔으나 자력연마법의 장점중의 하나인 다듬질 공정의 자동화 가능성을 실현시키기 위해서는 공정의 제어가 필요하다. 본 연구에서는 이를 실현시키기 위한 기초연구로서 컴퓨터구동 회전자력연마가공 시스템을 개발하고 그 기본특성을 알아보기 위해 유한요소법을 이용하여 원형 요오크 및 여섯개의 자극에 대해 자력선의 분포를 알아보았다. 또한 이로부터 가공영역의 자속밀도를 계산하고 다듬질 가공을 가능케 하기위한 회전자화의 발생방법에 대해 고찰하였다.

  • PDF

Evaluation of Welding Residual Stress Characteristics of a Surge Line Elbow (밀림곡관 맞대기 용접부의 잔류응력 특성 평가)

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Maan-Won;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Even though a lot of efforts have been devoted to evaluate welding residual stress characteristics of nuclear components, from the view point of accuracy, there are still some arguments in application of engineering estimation schemes. In this paper, three-dimensional finite element analyses (FEA) were carried out to predict residual stress distributions in butt welds of a typical surge line piping. Mesh optimization was conducted and subsequent analysis results such as the axial and hoop stress components along the weld center line and inner wall. Moreover, alternative evaluation was conducted by using three representative equations and their results were compared to those of FEA. Thereby, key parameters affecting to temperature profiles and residual stress distributions were derived as well as an optimum engineering estimation scheme was recommended.

Basic Design of High Pressure LOx Lines for a Liquid Rocket Engine (액체로켓엔진 액체산소 고압 배관부 기본설계)

  • Moon, Il-Yoon;Yoo, Jae-Han;Moon, In-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.107-110
    • /
    • 2009
  • A basic design for a Technical Development Model (TDM) of liquid oxygen lines from the turbopump exit to the oxidizer valves of the combustion chamber and the gas generator was conducted to develop a turbopump-fed liquid rocket engine. The TDM is composed of straight lines, elbows, bellows, a branch, an orifice, flanges and a heat insulator. Materials were determined by consideration of operation conditions, weight constraint and manufacturing procedures. The size and the location of each component were determined by flow analysis of the required flowrate and the pressure loss. Basic designs of the components were conducted by consideration of the operating temperature and the maximum expectation operating pressure. The safety factors were evaluated by structural analysis of design of each component.

  • PDF