• Title/Summary/Keyword: 고해상도이미지

Search Result 71, Processing Time 0.024 seconds

Ultrasonic Reflection Imaging for Discontinuity Detection of Rock Mass - Laboratory Study (암반 불연속면 탐측을 위한 초음파 반사 이미지 - 실내실험)

  • Lee, Jong-Sub;Kim, Seung-Sun;Kim, Dong-Hyun;Kim, Uk-Young;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.51-65
    • /
    • 2007
  • The purpose of this study is the development and application of a high resolution ultrasonic wave imaging system to detect discontinuity plane in lab-scale rock models. This technique is based on received time series which capture the multiple reflections at interface. This study includes the fundamental aspects of ultrasonic wave propagation in rock mass, the selection of the optimal ultrasonic wave transducer, data gathering, a signal processing, imaging methods, and experiments. Experiments are carried out by the horizontal movement and rotation devices. Experimental studies show the discontinuity is well detected by the horizontal movement and rotation devices under water. Furthermore, the discontinuity and the cavity on the plaster block are identified by the rotation device. This study suggests that the new method may be an economical and effective tool for the detection of the discontinuity on rock mass.

Experimental Investigation on Behavior of Single Horizontal Buoyant Jet (단일수평부력제트의 거동에 관한 실험적 연구)

  • Seo, Il-Won;Kim, Ho-Jung;Kwon, Seok-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1011-1015
    • /
    • 2005
  • 본 실험에서는 부력 조건이 달라질 때 단공방류구에서 정체수역으로 수평방류되는 부력제트의 거동을 규명하였다. LIF (Laser Induced Fluorescence) 시스템을 이용하여 수행하였는데, LIF 시스템은 고해상도의 이미지를 취득할 수 있어 데이터의 정확도가 높으며, 동시에 한 평면상의 농도장을 일시에 측정할 수 있는 장점이 있는 기술이다. LIF 시스템은 크게 세부분으로 구성되어 있는데 방출시스템, 포착시스템, 처리시스템이 그것이다. 실험 조건을 고려해서 온수를 이용하여 주변수와의 밀도차를 재현하였으며, LIF 시스템의 추적입자로 형광염료 Rhodamine B를 사용하였다. 또한, 실험 데이터 취득과정에서 필요한 검정과정을 수행하였는데, LIF 시스템에서 검정과정은 레이저 입사광의 강도가 불균등한 분포를 가지는 점과 주변수의 매질에 의한 근의 감쇠가 발생하는 문제를 해결하기 위한 것이다. LIF 시스템은 부력제트의 농도장을 매우 정밀하게 측정할 수 있는데, 방류밀도 Froude 수가 변함에 따라 측정된 순간이미지를 통해 제트의 진화과정을 상세하고 가시적으로 확인할 수 있었다. 검정과정을 거친 농도 종단면에서 중심선의 연장선이 LIF 시스템에 의해 측정된 순간이미지의 중심선 궤적과 거의 일치하는 것도 알 수 있었다. 또한 LIF 시스템을 통해서 취득된 단일수평부력제트의 궤적과 중심선 희석률을 기존의 상용모형인 VISJET과 CORMIX1에 의해 예측된 결과와 비교$\cdot$분석한 결과, 제트 중심선 궤적의 경우, LIF 시스템을 이용한 측정값은 대체로 VISJET 모형의 결과와 일치하는 것으로 밝혀졌다. 중심선 희석률의 경우, LIF 측정값은 대체로 CORMIX1 모형, Cederwall(1968)의 경험식과 일치하는 경향을 보였다.0\%$일 때가 밸브를 $60\%$$80\%$ 개폐시켰을 때보다 $0.3kg/cm^2,\;0.29kg/cm^2$ 낮게 나타나 밸브를 전체 개방 했을 때 관로내의 수압이 상수설계기준에 적합한 수압을 유지함을 알 수 있다. 상수관로 설계 기준에서는 관로내 수압을 $1.5\~4.0kg/cm^2$으로 나타내고 있는데 $6kg/cm^2$보다 과수압을 나타내는 경우가 $100\%$로 밸브를 개방하였을 때보다 $60\%,\;80\%$ 개방하였을 때가 더 빈번히 발생하고 있으므로 대상지역의 밸브 개폐는 $100\%$ 개방하는 것이 선계기준에 적합한 것으로 나타났다. 밸브 개폐에 따른 수압 변화를 모의한 결과 밸브 개폐도를 적절히 유지하여 필요수량의 확보 및 누수방지대책에 활용할 수 있을 것으로 판단된다.8R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$로 나타났다.천성 승모판 폐쇄 부전등을 초래하는 심각한 선천성 심질환이다. 그러나 진단 즉시 직접 좌관상동맥-대동맥 이식술로 수술적 교정을 해줌으로써 좋은 성적을 기대할 수 있음을 보여주었다.특히

  • PDF

Importance of Impregnation and Polishing for Backscattered Electron Image Analysis for Cementitious Self-Healing Specimen (시멘트계 자기치유 시편에 대한 반사전자현미경 이미지 분석을 위한 함침과 연마의 중요성)

  • Kim, Dong-Hyun;Kang, Kook-Hee;Bae, Seung-Muk;Lim, Young-Jin;Lee, Seung-Heun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • Studies on self-healing have currently been diversified and the methods to evaluate the studies have become more diversified as well. Among them, the back-scattered electron (BSE) image acquired through the scanning electron microscope (SEM) is attempted as the means to evaluate the self-healing effect on cracks. In order evaluate by the BSE image, sophisticated pre-processing of specimen is critical and this injected inside the particle, pore and artificial crack of the hardener to stabilize the structure of the newly generated self-healing product and it enables to endure the stress on polishing without deformation. The impregnated specimen smoothen the surface to obtain the BSE image of high resolution that polishing is made for diamond suspension for wet polishing after dry polishing. As a result of evaluating the self-healing product on the impregnated and polished self-healing specimen, the generated product is formed from the surface of the artificial crack and the self-healing substances are confirmed as $Ca(OH)_2$ and C-S-H.

A Study of Establishment and application Algorithm of Artificial Intelligence Training Data on Land use/cover Using Aerial Photograph and Satellite Images (항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구)

  • Lee, Seong-hyeok;Lee, Moung-jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.871-884
    • /
    • 2021
  • The purpose of this study was to determine ways to increase efficiency in constructing and verifying artificial intelligence learning data on land cover using aerial and satellite images, and in applying the data to AI learning algorithms. To this end, multi-resolution datasets of 0.51 m and 10 m each for 8 categories of land cover were constructed using high-resolution aerial images and satellite images obtained from Sentinel-2 satellites. Furthermore, fine data (a total of 17,000 pieces) and coarse data (a total of 33,000 pieces) were simultaneously constructed to achieve the following two goals: precise detection of land cover changes and the establishment of large-scale learning datasets. To secure the accuracy of the learning data, the verification was performed in three steps, which included data refining, annotation, and sampling. The learning data that wasfinally verified was applied to the semantic segmentation algorithms U-Net and DeeplabV3+, and the results were analyzed. Based on the analysis, the average accuracy for land cover based on aerial imagery was 77.8% for U-Net and 76.3% for Deeplab V3+, while for land cover based on satellite imagery it was 91.4% for U-Net and 85.8% for Deeplab V3+. The artificial intelligence learning datasets on land cover constructed using high-resolution aerial and satellite images in this study can be used as reference data to help classify land cover and identify relevant changes. Therefore, it is expected that this study's findings can be used in the future in various fields of artificial intelligence studying land cover in constructing an artificial intelligence learning dataset on land cover of the whole of Korea.

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.

The Changes of Aperture Variation and Hydraulic Conductivity for Compression Variability (압력에 따른 균열 간극변화와 수리전도도 변화 관찰)

  • 채병곤;이철우;정교철;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.1-11
    • /
    • 2003
  • In order to measure aperture variation dependent on normal stress and to characterize on relationship between aperture variation and hydraulic conductivity this study measured apertures of rock fractures under a high resolution confocal laser scanning microscope (CLSM) with application of five stages of uniaxial normal stresses. From this method the response of aperture can be continuously characterized on one specimen by different loads of normal stress. The results of measurements showed a rough geometry of fracture bearing non-uniform aperture. They also revealed different values of aperture variations according to the load stages on each position along a fracture due to the fracture roughness. Laboratory permeability tests were also conducted to evaluate the changes of permeability coefficients related to the aperture variations by different loads. The results of permeability tests revealed that the hydraulic conductivity was not reduced at a fixed rate with increase of normal load. Moreover, the rates of aperture variations did not match to those of hydraulic conductivity. The hydraulic conductivity calculated in this study did not follow the cubic law, representing that the parallel plate model is not suitable to express the fracture geometry corresponding to the results of aperture measurements under the CLSM.

Three-dimensional Imaging with an Endoscopic Optical Coherence Tomography System for Detection of Airway Stenosis (기도협착 측정을 위한 내시경 광 결맞음 단층촬영법을 이용한 3차원 이미징)

  • Kwon, Daa young;Oak, Chulho;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.243-248
    • /
    • 2019
  • The respiratory tract is an essential part of the respiratory system involved in the process of respiration. However, if stenosis occurs, it interferes with breathing and can even lead to death. Asthma is a typical example of a reversible cause of airway narrowing, and the number of patients suffering from acute exacerbation is steadily increasing. Therefore, it is important to detect airway narrowing early and prevent the patient's condition from worsening. Optical coherence tomography (OCT), which has high resolution, is suitable for observing the microstructure of tissues. In this study we developed an endoscopic OCT system. We combined a 1300-nm OCT system with a servo motor, which can rotate at a high speed. A catheter was pulled back using a linear stage while imaging with 360° rotation by the motor. The motor was selected considering various requirements, such as torque, rotational speed, and gear ratio of pulleys. An ex vivo rabbit tracheal model was used as a sample, and the sample and catheter were immobilized by acrylic structures. The OCT images provided information about the structures of the mucosa and submucosa. The difference between normal and stenosed parts in the trachea was confirmed by OCT. Furthermore, through a three-dimensional (3-D) reconstruction process, it was possible to identify and diagnose the stenosis in the 3-D image of the airway, as well as the cross-sectional image. This study would be useful not only for diagnosing airway stenosis, but also for realizing 3-D imaging.

Selection on Optimal Bands to EstimateYield of the Chinese Cabbage Using Drone-based Hyperspectral Image (드론 기반 초분광 영상을 이용한 배추 단수 추정의 최적밴드 선정)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.375-387
    • /
    • 2019
  • The use of drone-based hyperspectral image offers considerable advantages in high resolution remote sensing applications. The primary objective of this study was to select the optimal bands based on hyperspectral image for the estimation yield of the chinese cabbage. The hyperspectral narrow bands were acquired over 403.36 to 995.19 nm using a 3.97 nm wide, 150 bands, drone-based hyperspectral imaging sensor. Fresh weight data were obtained from 2,031 sample for each field survey. Normalized difference vegetation indices were computed using red, red-edge and near-infrared bands and their relationship with quantitative each fresh weights were established and compared. As a result, predominant proportion of fresh weights are best estimated using data from three narrow bands, in order of importance, centered around 697.29 nm (red band), 717.15 nm (red-edge band) and 808.51 nm (near-infrared band). The study determined three spectral bands that provide optimal chinese cabbage productivity in the visible and near-infrared portion of the spectrum.

Entropy-Based 6 Degrees of Freedom Extraction for the W-band Synthetic Aperture Radar Image Reconstruction (W-band Synthetic Aperture Radar 영상 복원을 위한 엔트로피 기반의 6 Degrees of Freedom 추출)

  • Hyokbeen Lee;Duk-jin Kim;Junwoo Kim;Juyoung Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1245-1254
    • /
    • 2023
  • Significant research has been conducted on the W-band synthetic aperture radar (SAR) system that utilizes the 77 GHz frequency modulation continuous wave (FMCW) radar. To reconstruct the high-resolution W-band SAR image, it is necessary to transform the point cloud acquired from the stereo cameras or the LiDAR in the direction of 6 degrees of freedom (DOF) and apply them to the SAR signal processing. However, there are difficulties in matching images due to the different geometric structures of images acquired from different sensors. In this study, we present the method to extract an optimized depth map by obtaining 6 DOF of the point cloud using a gradient descent method based on the entropy of the SAR image. An experiment was conducted to reconstruct a tree, which is a major road environment object, using the constructed W-band SAR system. The SAR image, reconstructed using the entropy-based gradient descent method, showed a decrease of 53.2828 in mean square error and an increase of 0.5529 in the structural similarity index, compared to SAR images reconstructed from radar coordinates.

3-Dimensional Reconstruction of Parallel fiber-Purkinje Cell Synapses Using High-Voltage Electron Microscopy (고압전자현미경을 이용한 소뇌 평행섬유-조롱박세포간 신경연접의 3차원 재구성)

  • Lee, Kea-Joo;Kweon, Hee-Seok;Kang, Ji-Seoun;Rhyu, Im-Joo
    • Applied Microscopy
    • /
    • v.35 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • Synapses are contact points where one neuron communicates with another. The morphological change of synapses under various physiological or pathological conditions has long been hypothesized to modify their functional properties. 3-dimensional (3-D) reconstruction of synapses with serial ultrathin sections has contributed to the understanding of ultrastructural dimensions and compositions of synapses. The 3-D reconstruction procedures, however, require a great amount of expertise as well as include prohibitively timeconsuming processes. Here, we introduce efficient 3-D reconstruction technique using high-voltage electron microscopy (HVEM). Primarily, we established an optimal section thickness and staining condition to observe synaptic structures in detail under HVEM. The result showed that synaptic profiles were preserved at the section thickness of 250 nm without the overlapping of synaptic ultrastructures. An increase in the reaction time of en bloc staining was most efficient to enhance contrast than the extension of postembedding staining or the addition of uranyl acetate during dehydration. Then, 3-D reconstruction of parallel fiber-Purkinje cell synapses in the rat cerebellum was carried out with serial HVEM images and reconstruction software. The images were aligned and the contours of synapses were outlined on each section. 3-D synapses were finally extracted from the section files by grouping all the synaptic contours. The reconstructed synapse model clearly demonstrated the configuration of pre and postsynaptic components. These results suggest that 3-D reconstruction of synapses using HVEM is much efficient and suitable for massive quantitative studies on synaptic connectivity than conventional TEM approach using numerous ultrathin sections.