• Title/Summary/Keyword: 고팽창

Search Result 284, Processing Time 0.029 seconds

분광타원분석법을 이용한 InAs 유전율 함수의 온도의존성 연구

  • Kim, Tae-Jung;Yun, Jae-Jin;Gong, Tae-Ho;Jeong, Yong-U;Byeon, Jun-Seok;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.162-162
    • /
    • 2010
  • InAs 는 광전자 및 광통신 소자에 널리 이용되는 $In_xGa_{1-x}As_yP_{1-y}$ 화합물의 endpoint 로서, Heterojunction Field-Effect Transistors (HEMTs), Heterojunction Bipolar Transistor (HBT) 등에 중요하게 이용되고, 다양한 소자의 기판으로도 폭넓게 사용되는 물질이다. InAs 의 반도체 소자로의 응용을 위해서는 정확한 광 특성과 밴드갭 값들이 필수적이며, 분광타원편광분석법(ellipsometry) 을 이용한 상온 InAs 유전율 함수는 이미 정확히 알려져 있다. 그러나 상온에서는 $E_2$ 전이점 영역에서 여러 개의 밴드갭들이 중첩되어 있어, 밴드구조계산 등에 필수적인 InAs의 전이점을 정확히 정의하기 어렵다. 또한, 현재의 산업계에서 중요하게 여겨지는 실시간 모니터링을 위해서는 증착온도에서의 유전율 함수 데이터베이스가 필수적이다. 이와 같은 필요성에 의해, 22 K - 700 K 의 온도범위에서 InAs 의 유전율 함수와 밴드갭 에너지에 대한 연구를 수행하였다. InAs bulk 기판을 methanol, acetone, DI water 등으로 세척 한 뒤, 저온 cryostat 에 부착하였다. 분광타원분석법은 표면의 오염에 매우 민감하기 때문에, 저온에서의 응결 방지를 위해 고 진공도를 유지하며, 액체 헬륨으로 냉각하였다. 0.7 - 6.5 eV 에너지 영역에서 측정이 가능한 분광타원편광분석기로 측정한 결과, 온도가 증가함에 따라 열팽창과 phonon-electron 상호작용효과의 증가에 의해, 밴드갭 에너지 값의 적색 천이와 밴드갭들의 중첩을 관찰 할 수 있었다. 정확한 밴드갭 에너지 값의 분석을 위하여 2계 미분을 통한 표준 밴드갭 해석법을 적용하였으며, 22 K 의 저온에서는 $E_2$ 전이점 영역에서 중첩된 여러 개의 밴드갭들을 분리 할 수 있었다. 또한 고온에서의 연구를 통해, 실시간 분석을 위한 InAs 유전함수의 데이터베이스를 확립하였다. 본 연구의 결과는 InAs 를 기반으로 한 광전자 소자의 개발 및 적용분야와 밴드갭 엔지니어링 분야에 많은 도움이 될 것으로 예상한다.

  • PDF

An Improved AE Source Location by Wavelet Transform De-noising Technique (웨이블릿 변환 노이즈 제거에 의한 AE 위치표정)

  • Lee, Kyung-Joo;Kwon, Oh-Yang;Joo, Young-Chan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.490-500
    • /
    • 2000
  • A new technique for the source location of acoustic emission (AE) in plates whose thichness are close to or thinner than the wavelength has been studied by introducing wavelet transform de-noising technique. The detected AE signals were pre-processed using wavelet transform to be decomposed into the low-frequency, high-amplitude flexural components and the high-frequency, low-amplitude extensional components. If the wavelet transform de-noising was employed, we could successfully filter out the extensional wave component, one of the critical errors of source location in plates by arrival time difference method. The accuracy of source location appeared to be significantly improved and independent of the setting of gain and threshold, plate thickness, sensor-to-sensor distance, and the relative position of source to sensors. Since the method utilizes the flexural component of relatively high amplitude, it could be applied to very large, thin-walled structures in practice.

  • PDF

Thrust Characteristics of Through-type Pintle Nozzle at Operating Altitudes Conditions (작동 고도에 따른 관통형 핀틀 노즐의 추력 특성 연구)

  • Jeong, Kiyeon;Hong, Ji-Seok;Heo, Junyoung;Sung, Hong-Gye;Yang, Juneseo;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • Numerical simulations have been performed to investigate thrust characteristics of a through-type pintle nozzle with or without flow separation at various operating altitudes. The low Reynolds number $k-{\varepsilon}$ with compressibility correction proposed by Sarkar are applied. The detail flow structures are observed and static pressures along nozzle wall are compared with experimental results. The flow separation in the pintle nozzle disappears and jet plume strongly expands as its operating altitude increases. To evaluate the thrust characteristics, the momentum term and pressure term of thrust are analyzed. Thrust and thrust coefficient at altitude 20 km are about 10% more than them at the ground 0km.

Comparative Study on the Characteristics of Heat Dissipation using Silicon Carbide (SiC) Powder Semiconductor Module (탄화규소(SiC) 반도체를 사용한 모듈에서의 방열 거동 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2018
  • Ceramic substrates applied to power modules of electric vehicles are required to have properties of high thermal conductivity, high electrical insulation, low thermal expansion coefficient and resistance to abrupt temperature change due to high power applied by driving power. Aluminum nitride and silicon nitride, which are applied to heat dissipation, are considered as materials meeting their needs. Therefore, in this paper, the properties of aluminum nitride and silicon nitride as radiator plate materials were compared through a commercial analysis program. As a result, when the process of applying heat of the same condition to aluminum nitride was implemented by simulation, the silicon nitride exhibited superior impact resistance and stress resistance due to less stress and warping. In terms of thermal conductivity, aluminum nitride has superior properties as a heat dissipation material, but silicon nitride is more dominant in terms of reliability.

Numerical Analysis on the Characteristics of Supersonic Steam Jet Impingement Load (초음속 증기제트의 충돌하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • Structures, systems and components of nuclear power plants should be able to maintain safety even in the event of design-basis accidents such as high-energy line breaks. The high-pressure steam jet ejected from the broken pipe may cause damage to the adjacent structures. The ANSI/ANS 58.2 code has been adopted as a technical standard for evaluating the jet impingement load. Recently, the U.S. NRC pointed out the non-conservativeness of the ANSI/ANS 58.2, because it does not take into account the blast wave effect, dynamic behavior of the jet, and oversimplifies the shape and load characteristics of the supersonic steam jet. Therefore, it is necessary to improve the evaluation method for the high-energy line break accident. In order to evaluate the behavior of supersonic steam jet, an appropriate numerical analysis technique considering compressible flow effect is needed. In this study, numerical analysis methodology for evaluating supersonic jet impingement load was developed and verified. In addition, the conservativeness of the ANSI/ANS 58.2 model was investigated using the numerical analysis methodology. It is estimated that the ANSI jet model does not sufficiently reflect the physical behavior of under-expanded supersonic steam jet and evaluates the jet impingement load lower than CFD analysis result at certain positions.

Review of Numerical Approaches to Simulate Time Evolution of Excavation-Induced Permeability in Argillaceous Rocks (점토질 퇴적암 내 굴착영향영역 투수특성의 시간경과 변화 파악을 위한 수치해석기법에 대한 고찰)

  • Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.519-539
    • /
    • 2020
  • We reviewed numerical approaches to assess a hydraulic properties of excavation-disturbed zone (EDZ)created in argillaceous sedimentary rocks. It has been reported that fractures in the sedimentary rocks containing expansive clays are gradually closing due to swelling and their permeabilities are evolving to the level of in-tact rock, which is known as a self-healing or self-sealing process. The numerical approaches introduced here are capable of simulating spatio-temporal variation of EDZ permeability during long-term operation of a repository by including the self-healing characteristics of fractures, which wa observed in laboratory as well as in-situ experiments, The applicability of the numerical approaches was verified from the comparison to in-situ measurements of EDZ permeability at underground research laboratories.

Compressive Strength and Healing Performance of Mortar Using Self-healing Inorganic Materials (자기치유형 무기계 혼합재를 사용한 모르타르의 압축강도 및 치유성능)

  • Hyung-Suk, Kim;Woong-Jong, Lee;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • In this study, the characteristics of self-healing mortars produced using an inorganic self-healing material consisting of ground granulated blast furnace slag, expansion agent, and anhydrite, were investigated. For three types of self-healing mortars with different amounts of the inorganic healing material, compressive strength was measured and the self-healing performance was evaluated through the constant water head permeability test. The healing rate and equivalent crack width according to crack-induced aging were used as indicies of healing performance evaluation. Considering the development of compressive strength of the self-healing mortars, the change in the healing rate with healing periods, and the economic feasibility, the optimal amount of inorganic self-healing materials was suggested as 20 % of the mass of cement.

Study on Utilization of Electric Arc Furnace Oxidizing Slag as Fine Aggregates for Cement Concrete (전기로 산화 슬래그의 콘크리트용 잔골재 활용)

  • Kim, Sang Myoung;Park, Ju Won;Lee, Hoon Ha;Kim, Ki Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.407-415
    • /
    • 2008
  • Hydration reaction of Free-CaO is thought to be the main reason of expansion failure of slag. A lot of research institutions are conducting studies on solutions to this problem, and moreover it has been carried out how to make use of aggregates for concrete. While studies covering wide rage of blast furnace slag have been accomplished in the country, studies on steelmaking slag are insufficient. Therefore, this study aimed at analyzing basic physical properties of electric arc furnace oxidizing slag, which is the main material, and furthermore it focused on how to make use of aggregates for concrete examining chemical mechanism, which can be put to practical use. To address this issue, components of electric arc furnace oxidizing slag were analyzed with measurement of physical properties, followed by long-term strength and detailed durability analysis, which can evaluate the appropriateness of application of cement concrete. Besides the environmental conservation and recycling which can be obtained by application of industry byproducts, commercializing of electric arc furnace oxidizing slag as fine aggregates for cement concrete are expected.

Utilization of Immersion-Drying Method for Measuring Damage Depth of Fire-Damaged High-Strength Concrete (화재로 손상된 고강도 콘크리트의 손상 깊이 측정을 위한 수중침지 건조방법의 활용)

  • Kim, Jong;Lim Gun-Su;Beak, Seung-Bok;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.297-308
    • /
    • 2024
  • This study presents a novel approach for evaluating fire-induced damage depth in concrete. The methodology leverages the principle that exposure to high temperatures causes internal expansion within concrete, leading to increased voids and microcracks in the damaged zones. This heightened porosity results in greater absorption rates compared to undamaged areas. By immersing fire-damaged concrete samples in water and subsequently monitoring the drying process, the depth of damage can be assessed. Differences in drying rates and color variations between damaged and undamaged areas serve as visual indicators for determining the extent of the damage. Experimental results from this water immersion method revealed damage depths of 38.7mm and 37.5mm for two different concrete mixtures. These measurements notably surpass the damage depths estimated using traditional phenolphthalein-based methods. This discrepancy suggests that utilizing the absorption rate principle, which is directly linked to the physical changes caused by thermal expansion, offers a more accurate and sensitive assessment of fire damage depth compared to methods relying solely on the presence of Portlandite for colorimetric indication.

A Study on the Technique and Process of Bending Wood

  • Kang, Hyung-Goo
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.6
    • /
    • pp.459-468
    • /
    • 2010
  • Materials are such an important factor in designing furniture. Wood is the biggest part of furniture materials. While wood is soft, eco-friendly and natural material, it is variable because it is characterized by severe expansion and contraction. Thus, if the changeable characteristic of wood is not considered in furniture design, the good design of furniture cannot be produced. As one of the skills dealing with woods, bending is such a useful way for making various forms of furniture. While it has been used in furniture-making for a long time, wood processing techniques like steaming bending, bending with ammonia and high frequency bending has been advanced. As wood is a viscoelastic material and has some plasticity, beautiful curves can be created when force is applied. Therefore this paper studies the types of bending methods for furniture and each characteristic of them. Furthermore, this study classifies wood process according to suitability for mass production or small-scale production and researches the proper wood process by the forms and the way of furniture production. Also this study aims to help furniture designers and cabinet makers with wood bending.

  • PDF