• Title/Summary/Keyword: 고체연소

Search Result 535, Processing Time 0.024 seconds

An Analysis on Combustion Instability in Solid Rocket Motor of 230mm Grade (230mm급 고체 추진기관의 연소불안정 거동 현상 분석)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.177-180
    • /
    • 2009
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. If slot length is shot, pressure oscillation of longitudinal mode is amplified by cylinder part after middle phase of total burn time. A study has analyzed pressure oscillation of longitudinal mode at spectrum and acoustic modal analysis at pressure of result on static firing test.

  • PDF

An Analysis on Combustion Instability in Solid Rocket Motor of 4 Slotted Tube Grain (4 Slotted Tube형 고체 추진기관의 연소불안정 거동 현상 분석)

  • Cho, Ki-Hong;Kim, Eui-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.48-56
    • /
    • 2011
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. Slotted-tube grain restrains longitudinal 1st pressure oscillation. But cavity volume of aft. insulation ablation amplifies 2nd pressure o scillation by vortext shedding. A study has suppressed combustion instability and vortex shedding by modified 4 slotted tube solid rocket motor design.

Analysis of the Burning Rate of Solid Propellant Accounting for the Evaporation on the Surface (표면 증발을 고려한 고체추진제의 연소율 해석)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • The burning rate of solid propellant is one of the key parameter associated with the dynamic characteristics of combustion and the combustion performances. In the AP propellants, the evaporation on the reacting surface as well as the decomposition of the propellant is of great importance in determining the overall burning rate. In this study, a theoretical analysis was conducted to obtain the expression for burning rate in the steady state combustion with the energy and species equations in the condensed phase when the radiative heat flux partially contributes to the total heat transfer to the propellant surface.

  • PDF

Theoretical Analysis of the Steady Burning Rate for Homogeneous Solid Propellants with Surface Evaporation (표면 증발을 고려한 AP추진제의 정상 연소율 해석)

  • 이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.2-2
    • /
    • 1998
  • 고체 추진제의 연소율(burning rate)은 연소의 동적 기동을 이해할 수 있을 뿐 아니라 추진제의 성능을 판단할 수 있는 중요한 수단이기 때문에 많은 연구가 진행되어 왔다. 특히 AP계의 고체추진제 표면에서는 발열반응인 분해반응(decomposition) 이외에도 기체로 증발되는 증발되는(evaporation or sublimation)이 존재한다. 증발반응으로 인하여 연소율은 외부압력의 변화에 대하여 반응하게 되며 실험적으로 $r_{b}$= a $p^n$의 관계를 보여주고 있다. 즉, 연소율(burning rate)은 연소실 압력 P의 n승에 비례하며 여기서 n은 실험적으로 결정되는 지수이다. 그러나 압력지수 n은 일반적으로 온도와 압력의 함수이기 때문에 실험적으로 이 측정하기는 매우 어려운 일이다. 또한 QSHOD 가정을 사용하여 고체 추진제의 연소 응답함을 해석하기 위해서 추진제의 민감계수(sensitivity parameters)에 관한 관계식이 필요하며 이러한 관계식은 추진제의 정상연소율에 관한 관계식으로부터 얻을 수 있다.다.

  • PDF

Erosive burning and combustion instability of the solid rocket motor with large initial burning surface area (큰 초기 연소면적을 가지는 고체 모타의 침식 연소 및 연소 불안정)

  • Jin, Jungkun;Cha, Hong-seok;Lee, Dohyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1115-1121
    • /
    • 2017
  • In order to obtain high thrust at the beginning of the flight, the solid rocket motor with large initial burning surface area was designed and tested. From the static firing test, lower initial thrust was obtained compared with the expected thrust based on the internal ballistic prediction due to the negative erosive burning effect which reduced the burning rate estimated by APN Law. In addition, the radial mode combustion instability was observed with 8 fins grain configuration. This instability was removed after the odd number of fins were used.

  • PDF

A study on ultrasonic signal denoising techniques for improving ultrasonic burning rate measurements of solid propellants (고체추진제 연소속도 측정의 정밀도 향상을 위한 초음파 신호 잡음제거 기술 연구)

  • Jeon, Su-Kyun;Song, Sung-Jin;Kim, Hak-Joon;Ko, Sun-Feel;Oh, Hyun-Taek;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.200-203
    • /
    • 2009
  • Ultrasonic techniques have the advantage of determining the burning rates with wide range of pressure in only a single test. However, ultrasonic techniques have a drawback, which is that they are using high frequency transducers and it is easily affected by noise. Therefore, ultrasonic measurement method needs noise reduction algorithm to improve or grantee accuracy of burning rate measurements of solid propellants using ultrasound. Thus, in the present study, we propose a noise reduction method of measured ultrasonic signals by applying wavelet shrinkage.

  • PDF

The Nonlinear Combustion Instability Prediction of Solid Rocket Motors (고체로켓모터의 비선형 연소 불안정성 예측 기법)

  • Hong, Ji-Seok;Moon, Hee-Jang;Sung, Hong-Gye;Um, Won-Seok;Seo, Seonghyeon;Lee, Do-hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2016
  • The prediction of combustion instability is important to avoid an obvious threat to the structural safety and the motor performance because it affects the apparent response function of the propellant, the burning rate, and a mean flow Mach number at the local surface. The combustion instability occurs in case acoustic waves were coupled with the combustion/flow dynamic frequency. In this paper, an acoustic instability model is derived from the nonlinear wave equation for analysing acoustic dynamics in solid rocket motors. The chamber pressure and burning rate effects on combustion instability have been investigated.

Intergrated Design Software Development for Solid Rocket Motors (고체 추진기관 설계를 위한 통합 프로그램 개발)

  • Lee, Jun-Ho;Rho, Tae-Ho;Choi, Sung-Han;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • There exist a lot of factors and restrictions for the design of solid rocket motors like burning rate, of solid propellant, demanded thrust, chamber pressure, diameter, length, weight and acceleration. For the optimization of these factors and restrictions, integrated design software for internal/external ballistic analysis was developed and verified by the performance test of solid rocket motors.

  • PDF

건식 흡착제를 이용한 $CO_2$ 포집기술

  • Park, Su-Jin;Lee, Seul-Lee
    • Journal of the KSME
    • /
    • v.53 no.6
    • /
    • pp.26-30
    • /
    • 2013
  • 지구온난화의 주범인 이산화탄소의 포집저장기술(CCS) 중 포집기술에 집중하여 기술하였다. 이산화탄소 포집기술은 연소 후 포집, 연소 전 포집, 순산소 연소 포집기술로 분류되는데, 그 중에서도 연소 후 포집기술은 기존발생원에 적용하기 가장 용이한 기술로 판단되고 있다. 따라서 이 글에서는 연소 후 포집기술에 적용되는 다양한 기술 중 건식 고체 흡착제의 종류 및 건식 고체 흡착제를 이용한 연소 후 이산화탄소 포집기술 개발의 현황에 대하여 기술하였다.

  • PDF

A Linear Stability Analysis of Unsteady Combustion of Solid Propellants (고체추진제 비-정상연소의 선형 안정성해석)

  • 이창진;김성인;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The combustion instability analysis of solid propellants is generally done by the simplified governing equations for chemically inert condensed phase region with QSHOD assumption. Since the gas phase and surface reaction layer can be more rapidly relaxed to the external perturbations than the condensed phase, these regions are treated as quasi-steady manner in the analysis. In this paper, the classical ZN(Zeldovic-Novozhilov)approach was re-examined with the presence of radiation augmented burning enhancement in the combustion. Also, the surface reaction was assumed to partially absorb the incident radiant heat fluxes and pass the remaining to the chemically inert condensed phase. As a result of the analysis, the burning rate response function was obtained which consists of a pressure response function and a radiation response function. The response function was shown to be able to predict the results of T-burner tests.

  • PDF