• Title/Summary/Keyword: 고정소수점 연산

Search Result 91, Processing Time 0.022 seconds

FPGA Implementation of SVM Engine for Training and Classification (기계학습 및 분류를 위한 SVM 엔진의 FPGA 구현)

  • Na, Wonseob;Jeong, Yongjin
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.398-411
    • /
    • 2016
  • SVM, a machine learning method, is widely used in image processing for it's excellent generalization performance. However, to add other data to the pre-trained data of the system, we need to train the entire system again. This procedure takes a lot of time, especially in embedded environment, and results in low performance of SVM. In this paper, we implemented an SVM trainer and classifier in an FPGA to solve this problem. We parlallelized the repeated operations inside SVM and modified the exponential operations of the kernel function to perform fixed point modelling. We implemented the proposed hardware on Xilinx ZC 706 evaluation board and used TSR algorithm to verify the FPGA result. It takes about 5 seconds for the proposed hardware to train 2,000 data samples and 16.54ms for classification for $1360{\times}800$ resolution in 100MHz frequency, respectively.

Design of Parallel Decimal Multiplier using Limited Range of Signed-Digit Number Encoding (제한된 범위의 Signed-Digit Number 인코딩을 이용한 병렬 십진 곱셈기 설계)

  • Hwang, In-Guk;Kim, Kanghee;Yoon, WanOh;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.50-58
    • /
    • 2013
  • In this paper, parallel decimal fixed-point multiplier which uses the limited range of Singed-Digit number encoding and the reduction step is proposed. The partial products are generated without carry propagation delay by encoding a multiplicand and a multiplier to the limited range of SD number. With the limited range of SD number, the proposed multiplier can improve the partial product reduction step by increasing the number of possible operands for multi-operand SD addition. In order to estimate the proposed parallel decimal multiplier, synthesis is implemented using Design Compiler with SMIC 180nm CMOS technology library. Synthesis results show that the delay of proposed parallel decimal multiplier is reduced by 4.3% and the area by 5.3%, compared to the existing SD parallel decimal multiplier. Despite of the slightly increased delay and area of partial product generation step, the total delay and area are reduced since the partial product reduction step takes the most proportion.

Implementation of the High-Quality Audio System with the Separately Processed Musical Instrument Channels (악기별 분리처리를 통한 고음질 오디오 시스템 구현)

  • Kim, Tae-Hoon;Lee, Sang-Hak;Kim, Dae-Kyung;Lee, Sang-Chan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.346-353
    • /
    • 2013
  • This paper deals with the implementation of a high-quality audio system for karaoke. For improving the key/tempo changes performance, we separated the audio into many musical instrument channels. By separating musical instrument channels, high-quality key/tempo changes can be achieved and we confirmed this using the cross-correlation distribution and the MOS evaluation. The improved audio system was implemented using the TMS320C6747 DSP with fixed/floating-point operations. The implemented audio system can perform the multi-channel WMA decoding, the MP3 encoding/decoding, the wav playing, the EQ, and the key/tempo changes in real time. The WMA channels used for processing the separated instrument channels. The audio system includs the MP3 encoding/decoding function for playing and recording and the wav channel for the effect sound.

A Study on Correlation Accuracy Improvement of the Daejeon Correlator using Expansion of Effective Bit-number (유효 비트수 확장을 이용한 대전상관기의 상관 정밀도 개선에 관한 연구)

  • Yeom, Jae-Hwan;Roh, Duk-Gyoo;Oh, Se-Jin;Oh, Chung-Sik;Jung, Jin-Seung;Chung, Dong-Kyu;Yun, Young-Joo;Ozeki, Kensuke;Onuki, Hirofumi;Kim, Yong-Hyun;Hwang, Cheol-Jun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.255-260
    • /
    • 2013
  • In this paper, we propose the effective bit expansion of FFT module for improving the accuracy of correlation result of the Daejeon correlator. The Daejeon correlator based on FPGA was implemented in order to fast data processing with the fixed-point of FFT operation. In correlation result, however, the phenomenon of phase concentration to 0 degree was appeared in lower frequency area of bandwidth due to lack of operational bit. This phenomenon has an affect on the accuracy of correlation result by introducing the effect of data loss because of excluding phase concentration during analysis of observed radio source. In order to improving the accuracy of correlation result we carried out the simulation by expanding bit-number than 16-bit operation of previous FFT module within given resource limits of FPGA. Through the simulation results, the effective bit number for FFT module within used FPGA resource limits is able to expand, and we confirmed that the operational 20-bit of FFT module is effective for improving accuracy of correlation result by comparing with experimental result.

Performance analysis and hardware design of LDPC Decoder for WiMAX using INMS algorithm (INMS 복호 알고리듬을 적용한 WiMAX용 LDPC 복호기의 성능분석 및 하드웨어 설계)

  • Seo, Jin-Ho;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.229-232
    • /
    • 2012
  • This paper describes performance evaluation using fixed-point Matlab modeling and simulation, and hardware design of LDPC decoder which is based on Improved Normalized Min-Sum(INMS) decoding algorithm. The designed LDPC decoder supports 19 block lengths(576~2304) and 6 code rates(1/2, 2/3A, 2/3B, 3/4A, 3/4B, 5/6) of IEEE 802.16e mobile WiMAX standard. Considering hardware complexity, it is designed using a block-serial(partially parallel) architecture which is based on layered decoding scheme. A DFU based on sign-magnitude arithmetic is adopted to minimize hardware area. Hardware design is optimized by using INMS decoding algorithm whose performance is better than min-sum algorithm.

  • PDF

Development of Variable Speed Digital Control System for SRM using Simple Position Detector (간단한 위치검출기를 이용한 SRM 가변속 디지털 제어시스템 개발)

  • 천동진;정도영;이상호;이봉섭;박영록
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.202-208
    • /
    • 2001
  • A Switched Reluctance Motor(SRM) has double salient poles structure and the phase windings are wound in stator. SRM hase more simple structure that of other motor, thus manufacture cost is low, mechanically strong, reliable to a poor environment such as high temperature, and maintenance cost is low because of brushless. SRM needs position detector to get rotator position information for phase excitation and tachometer or encoder for constant speed operation. But, this paper doesn\`s use an encoder of high cost for velocity measurement of rotator. Instead of it, the algorithm for position detection and velocity estimation from simple slotted disk has been proposed and developed. To implement variable speed digital control system with velocity estimation algorithm, the TMS320F240-20MIPS fixed point arithmetic processor of TI corporation is used. The experimental results of the developing system are enable to control speed with wide range, not only single pulse, hard chopping mode and soft chopping, ut also variable speed control, and advance angle control.

  • PDF

Development of High Precision Impedance Measurement Systems in Specific Ranges Using a Microprocessor (마이크로프로세서를 이용한 특정 영역에서 고정밀 임피던스 측정 시스템 개발)

  • Ryu, Jae-Chun;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.316-321
    • /
    • 2019
  • In this paper, by applying the constant current principle we develop an impedance measurement system which can measure the high precision impedance of various electric materials by using microprocessor. This measurement system board has an interface device for acquiring digital data from an external device including an impedance measuring device, and system software is also developed by a firmware program executed on such an embedded board. It can measure the high precision impedance of a specific band with 1/32768 precision by using 15-bit ADC(analog to digital converter) and calculate it to the five digits to the right of the decimal point(fraction part). Data is transmitted through a USB interface of a general computer and a measuring device to manage digital data. An impedance measurement system equipped with a communication function capable of a more general and easy-to-use interface than other equipment is developed and verified.

A High-performance Digital Hearing Aid Processor Based on a Programmable DSP Core (Programmable DSP 코어를 사용한 고성능 디지털 보청기 프로세서)

  • 박영철;김동욱;김인영;김원기
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.467-476
    • /
    • 1997
  • This paper presents a designing of a digital hearing aid processor (DHAP) chip being operated by a dedicated DSP core. The DHAP for hearing aid devices must be feasible within a size and power consumption required. Furthermore, it should be able to compensate for wide range of hearing losses and allow sufficient flexibility for the algorithm development. In this paper, a programmable 16-bit fixed-point DSP core is employed thor the designing of the DHAP. The designed DHAP performs a nonlinear loudness correction of 8 frequency bands based on audiometric measurements of impaired subjects. By employing a programmable DSP, the DHAP provides all the flexibility needed to implement audiological algorithms. In addition, the chip has low-power feature and $5, 500\times5000$$\mu$$m^2$ dimensions that fit for wearable hearing aids.

  • PDF

An Efficient 2D Discrete Wavelet Transform Filter Design Using Lattice Structure (Lattice 구조를 갖는 효율적인 2차원 이산 웨이블렛 변환 필터 설계)

  • Park, Tae-Geun;Jeong, Seon-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.59-68
    • /
    • 2002
  • In this paper, we design the two-dimensional Discrete Wavelet Transform (2D DWT) filter that is widely used in various applications such as image compression because it has no blocking effects and relatively high compression rate. The filter that we used here is two-channel four-taps QMF(Quadrature Mirror Filter) Lattice filter with PR (Perfect Reconstruction) property. The proposed DWT architecture, with two consecutive inputs shows an efficient performance with a minimum of such hardware resources as multipliers, adders, and registers due to a simple scheduling. The proposed architecture was verified by the RTL simulation, and utilizes the hardware 100%. Our architecture shows a relatively high performance with a minimum hardware when compared with other approaches. An efficient memory mapping and address generation techniques are introduced and the fixed-point arithmetic analysis for minimizing the PSNR degradation due to quantization is discussed.

Comparison of PI and PR Controller Based Current Control Schemes for Single-Phase Grid-Connected PV Inverter (단상 계통 연계형 태양광 인버터에 사용되는 PI 와 PR 전류제어기의 비교 분석)

  • Vu, Trung-Kien;Seong, Se-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2968-2974
    • /
    • 2010
  • Nowadays, the PV systems have been focused on the grid connection between the power source and the grid. The PV inverter can be considered as the core of the whole system because of an important role in the grid-interfacing operation. An important issue in the inverter control is the load current regulation. In the literature, Proportional Integral (PI) controller, which is normally used in the current-controlled Voltage Source Inverter (VSI), cannot be a satisfactory controller for an AC system because of the steady-sate error and the poor disturbance rejection, especially in high-frequency range. Compared with conventional PI controller, Proportional Resonant (PR) controller can introduce an infinite gain at the fundamental frequency of the AC source; hence it can achieve the zero steady-state error without requiring the complex transformation and the de-coupling technique. Theoretical analyses of both PI and PR controller are presented and verified by simulation and experiment. Both controller are implemented in a 32-bit fixed-point TMS320F2812 DSP processor and evaluated on a 3kW experimental prototype PV Power Conditioning System (PCS). Simulation and experimental results are shown to verify the controller performances.