• Title/Summary/Keyword: 고유 주파수

Search Result 602, Processing Time 0.025 seconds

Acceleration of the Perception Threshold of Occupants for the Horizontal Vibration of Tall Buildings (고층 건축물의 수평진동에 대한 사용자의 지각임계가속도)

  • Cho, Kang-Pyo;Shin, Sung-Woo;Jeong, Seung-Hwan;Cho, Soo-Youn
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.371-377
    • /
    • 2007
  • In this paper, acceleration threshold of perception for the horizontal vibration of tall buildings was estimated. Excessive vibration of tall buildings by wind can give displeasure, such as giddiness and visual insecurity. To provide comfortable environment to residents of tall buildings, acceleration needs to be limited. For tall buildings the first mode of vibration is dominant. To reproduce the first mode of vibration, experiments were performed by generating sine waves by a shaking table. A nitration house was made and forty persons were employed for experiments. The forty persons were organized into five experimental groups, each of which was composed of eight persons, and the threshold of perception for horizontal vibration was measured by increasing acceleration in the range of 0.2Hz through 1.2Hz of frequency, Performance curves were obtained by dividing the distribution of perception for horizontal vibration into the range of $0{\sim}20%,\;21{\sim}40%,\;41{\sim}60%,\;61{\sim}80%\;and\;81{\sim}100%$ and by fitting curves.

Performance Analysis of Wave Energy Converter Using a Submerged Pendulum Plate (몰수형 진자판을 이용한 파력발전장치의 성능해석)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The parametric study was performed for performance enhancement of wave energy converter(WEC) using a submerged pendulum plate. The wave exciting moment and hydrodynamic moment were obtained by means of eigenfunction expansion method based on the linear potential theory, and then the roll response of a pendulum plate and time averaged extracted power were investigated. The optimal PTO damping coefficient was suggested to give optimal extracted power. The peak value of optimal extracted power occurs at the resonant frequency. The resonant peak and it's width increase, as the height and thickness of a pendulum plate increase. The mooring line installed at the end of the pendulum plate is effective for extracting wave energy because it can not only induce the resonance with the waves of the installation site but also increase the restoring moment in case of PTO-on. The WEC using a rolling pendulum plate suitable for the shallow water acts as breakwater as well as energy extraction device.

Numerical Study on Energy Absorption of a Floater for Design of Wave Energy Convertor in Ocean (해양 파력 발전 시스템 설계를 위한 부유체 에너지 흡수에 관한 기초연구)

  • Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.635-644
    • /
    • 2012
  • In order to design a wave energy generating system, a 6-DOF analysis technique is applied to the three-Dimensional CFD analysis on of a floating body and the behavior is interpreted according to the nature of the incoming wave. A wave period of 5.5s & amplitude of 0.57m from Marado is chosen. 12 case of natural pitching period from 1.25 to 2.8s has been modeled. The relation between tuning factor & pitch angle for the waves generated is compared to analyze the effects of energy absorption variables, namely mass moment of inertia, angular velocity and angular acceleration. From the results obtained, we conclude that model L is the maximum power absorbed, 6kW approximately. A maximum pitch angle of 1.91 degree was attained by Model F, and the maximum displacement of nearly 0.7m was attained by Model L among models D, F and L.

Adaptation of Modal Parameter and Elastic Modulus Estimation Method for PSC Bridge Based on Ambient Vibration (상시 진동 계측을 기반으로 한 PSC 교량의 모드계수 및 탄성계수 추정기법 적용)

  • Lee, Sung-Jin;Kim, Saang-Bum;Choi, Kyu-Yong;Lee, Tae-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.574-577
    • /
    • 2007
  • 본 논문에서는 실 시공 중인 PSC 교량에 대하여 풍하중에 의한 상시 진동 계측 자료을 기반으로, 교량의 동특성(고유진동수, 모드형상)을 추정하였으며, 이를 바탕으로 대상 교량의 탄성계수를 추정하여 정적 계측을 통한 탄성계수 결과와 비교하였다. 본 논문에서 사용한 동특성 추정 기법은, 대표적인 주파수 영역 해석 방법인 Frequency Domain Decomposition(FDD) 방법과 시간영역 해석 방법인 Stochastic Subspace Identification(SSI) 방법을 이용하였다. 탄성계수 추정은 유한요소모델과 계측 결과를 이용하여 두 개의 결과 차이가 수렴하도록 하는 반복 계산을 통해 탄성계수를 추정하였다. 우선, 탄성계수 추정 기법의 검증을 위해, 수치 해석을 통하여 그 기법을 검증하였으며, 해석 결과 정확한 탄성계수값을 추정하였으며, 이를 통해 본 논문에서 적용한 탄성계수 추정법에 대한 신뢰도를 확인하였다. 이를 바탕으로 사용된 추정 기법을 실 교량에 적용하기 위해 실제 상시 진동 계측 값을 바탕으로 실교량의 동특성 및 탄성계수를 추정하였다. FDD 및 SSI 기법을 통한 모드 해석 결과, 두 기법 모두 유사한 결과를 나타내어 FDD 및 SSI 두 방법에 대한 결과의 신뢰도를 확인 할 수 있었다. 추정 탄성계수 값은 거더 단면내 설치한 응력계 및 변형률계를 통한 계측 결과값의 범위 내에 있음을 확인하였다. 따라서 본 논문에서 적용한 교량의 상시 진동 데이터를 바탕으로 한동특성 및 탄성계수 추정법이 구조물의 대략적인 탄성계수 및 이에 따른 구조물의 전체적인 건전도를 파악하는데 도움이 되리라 생각된다.

  • PDF

A Vibration Mode Analysis of Cable-type Winding for Distribution Power Transformer by using Transfer Matrix Method (변환행렬법을 이용한 케이블 권선형 배전용 변압기 귄선의 진동모드 해석)

  • Shin, Pan-Seok;Chung, Hyun-Koo;Yoon, Koo-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.85-91
    • /
    • 2009
  • This paper proposes a simulation method of the internal winding fault to calculate the short-circuit current, electromagnetic force and vibration mode in a distribution power transformer by using FEM program(FLUX2D) and analytic algorithm. A usage of the Transfer matrix method is also presented for the vibration mode analysis of the cable-type winding of power transformer. The equations of the winding are approximated by the series expansions of the distributed mass mode and Timoshenko's beam theory. The simulation examples are provided for the cable type winding of the transformer(22.9[kV]/220[V], 1,000[kVA]) to verify the method. The proposed Transfer Matrix Method is also verified by the ANSYS program for the vibration mode of the transformer winding. The method presented may serve as one of the useful tools in the electromagnetic force and vibration analysis of the transformer winding under the short circuit condition.

Earthquake Response Characteristics of a Port Structure According to Exciting Frequency Components of Earthquakes (가진 주파수성분에 따른 항만구조물의 지진응답특성에 관한 연구)

  • Kim Doo Kie;Ryu Hee Ryong;Seo Hyeong Yeol;Chang Seong Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • The seismic response characteristics of a port structure were investigated by the earthquake analyses of the structure subjected to high-, low-frequency component, and Uljin earthquakes. In the Fluid-Structure-Soil Interaction(FSSI) analysis, the fluid is modeled by the 4-node quadrilateral element which is a modification of a structural plane element, and the port structure and foundation is modelled by the plane strain element. Since the present method directly models the fluid-structure-soil interaction system using finite element method, it can be easily applied to the dynamic analysis of a 2-D fluid-port-soil system with complex geometry. The results of the seismic coefficient. added mass, and FSSI methods are compared. The results showed that the earthquake with high frequency components more affects the seismic response of the structure than that of low frequency components.

Wave Control by a Surface-Mounted Horizontal Membrane (수면 위에 고정된 수평막에 의한 파랑제어)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • The performance of wave control by a surface-mounted horizontal membrane is analyzed in the frame of linear potential theory. To employ the eigenfunction expansion method, the fluid domain is divided into two regions i.e. region without membrane and membrane-covered region. By matching the each solutions at boundaries of adjacent regions, the complete solution is obtained. The present analytical method solving the scattering problem directly gives the same results as Cho and Kim(1998)'s method solving the diffraction and the radiation problem separately. To verify the developed model, the model test with a surface-mounted horizontal membrane is conducted at the wave tank(36m${\times}$0.91m${\times}$l.22m). The analytic results are in good agreement with the experimental results. The reflection and transmission coefficients are investigated according to the change of membrane tension, length and incident frequencies.

Damping of Water Waves over Permeable Bed of Finite Depth (유한한 깊이의 투수층에 의한 파랑의 감쇠)

  • Kim, Gun-Woo;Lee, Myung-Eun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.199-205
    • /
    • 2012
  • In this study, wave transformation by damping due to the permeable bed of finite depth is investigated. The relationship between wave damping rate and relative water depth are presented. The damping rate is used in the eigenfunction expansion method to calculate the wave dissipation over the permeable bed. For a permeable shoal, the eigenfunction expansion model result is compared with that of the integral equation method to show good agreement. The model is also used to examine the wave reflection over the permeable planar slope of various frequency. It has been found that in general relatively short waves are more influenced by the permeability of the permeable seabed than relatively long waves unless the water depth is so large that the influence of permeable bed on surface water waves disappears.

Prediction and Application of the Dynamic Modulus of Elasticity of Concrete Using the Wavelet Analysis (웨이블릿 해석을 이용한 콘크리트의 동탄성계수 추정 및 응용)

  • Jung, Beom-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.843-850
    • /
    • 2010
  • The dynamic modulus of elasticity of concrete can be determined nondestructively using impact echo test as prescribed in KS F 2437. The fundamental longitudinal frequency of the concrete cylinders with free-free boundary condition was estimated by the wavelet transform theory. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the features of the pertinent signals can be characterized in the time-frequency plane. For the concrete mix design utilized in this study, no significant difference between the dynamic and the static moduli of elasticity was observed. This was contrary to the perceived general notion of having the dynamic modulus considerably higher than the static modulus. It has been shown that the modulus from static and dynamic by impact echo test are comparable to each other fairly well, when the effect of strain level was properly taken into account. In this experimental test, it was shown that the dynamic modulus is approximately equal to the tangent modulus at $1{\times}10^{-4}$ strain level.

Development of Structure Dynamic Characteristics Analysis System Prototype using Image Processing Technique (영상처리기법을 이용한 구조물 동특성 분석 시스템 프로토타입 개발)

  • Jo, Byung-Wan;Lee, Yun-Sung;Kim, Jung-Hoon;Kim, Do-Keun;Yoon, Kwang-Won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.11-21
    • /
    • 2016
  • Recently, structure safety management techniques using cutting-edge technology(Displacement senor, sensor of acceleration) has emerged as an important issue owing to the aging of infrastructure such as bridge and building. In general, the structural monitoring system for structure safety management is based on IT technology and it is expensive to install. In this paper developed an image-based structure dynamic characteristic analysis system prototype to assess the damage of structure in a more cost-effective way than traditional structure health monitoring system. The inspector can take a video of buildings or other structures with digital camera or any other devices that is passible to take video, and then using NCC calculation for image processing technique to get natural frequency. This system is analysis of damage of the structure using a compare between the frequency response ratio and functions when problems are occurs send alarm to administrator. This system is easier to install and remove than previous monitoring sensor in economical way.