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유한한 깊이의 투수층에 의한 파랑의 감쇠
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Abstract : In this study, wave transformation by damping due to the permeable bed of finite depth is investigated. The relationship

between wave damping rate and relative water depth are presented. The damping rate is used in the eigenfunction expansion method to

calculate the wave dissipation over the permeable bed. For a permeable shoal, the eigenfunction expansion model result is compared

with that of the integral equation method to show good agreement. The model is also used to examine the wave reflection over the

permeable planar slope of various frequency. It has been found that in general relatively short waves are more influenced by the

permeability of the permeable seabed than relatively long waves unless the water depth is so large that the influence of permeable bed

on surface water waves disappears.
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요    약 : 본 연구에서는 유한한 깊이의 투수층에 의한 에너지 감쇠효과를 고려한 파랑의 변형을 해석하였다. 파의 에너지 감쇠율과 상대수심

의 관계식을 제시하였으며, 에너지 감쇠율을 고유함수전개법에 사용하여 투수층에 의한 에너지 감쇠를 계산하였다. 투수성이 있는 수중둔덕에

대해서, 수치실험 결과는 해석해로 간주할 수 있는 적분방정식의 결과와 비교하여 잘 일치하였다. 또한, 투수경사에 의한 반사율을 다양한 주

파수에 대해서 실험하였으며, 수치실험 결과, 수심이 매우 커서 수면파가 투수층의 영향을 받을 정도가 아닌 경우에는 상대적으로 파장이 짧은

파랑일수록 투수층의 영향을 크게 받는 것으로 나타났다.

핵심용어 : 고유함수전개법, 파랑 감쇠, 투수성 바닥, 파랑 산란, 선형파

1. Introduction
 

As wind waves generated in deep water approach the

nearshore zone, they experience many important physical

phenomena caused by bathymetric variations, nonlinear

interactions among different wave components and

interferences with coastal structures. Among these, the

bathymetric variations play a significant role in the change

of the wave transformation. Thus, harbor engineers should

have a proper tool for estimating the wave climate as

accurately as possible to design a coastal structure in

nearshore area.

The propagation of monochromatic surface waves over a

variational bathymetry has been investigated through
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theoretical, experimental and numerical studies because of its

practical application in designing of submerged coastal

structures. In order to solve the case of normal wave

incidence and arbitrary relative depth over a sill or a fixed

obstacle at the surface, Takano(1960) employed an

eigenfunction expansion of the velocity potentials in each

constant depth region and matched them at the region

boundaries. The set of linear integral equation was solved for

a truncated series. The problem of obliquely incident waves

over an asymmetric trench was solved by Kirby and

Dalrymple(1983) using a modified form of Takano’s method.

O’Hare and Davies(1992) and Guazzelli et al.(1992) presented a

new method for the modeling of propagation of monochromatic

waves over a smoothly varying bottom topography by

dividing the topography into a series of small steps and

calculated the reflection and transmission coefficient by using

scattering matrix method. The previous studies have all
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investigated the interaction of water waves with changes in

impermeable bathymetry.

Viscous damping of nearshore waves over a permeable

seabed has long been recognized as an important coastal

engineering problem. Reid and Kajiura(1957) derived the

damping rate of waves traveling over an infinitely deep

permeable seabed on the assumption that the flow inside the

bed is governed by the Darcy’s equation. Later, Liu and

Dalrymple(1984) derived the wave damping rate over a

permeable seabed of finite depth by expressing the flow

inside the bed by the generalized Darcy’s equation, which

considers additional wave damping inside the boundary layers

between water and soil and between soil and impermeable

stratum. However, they found that the damping is largely due

to the energy losses in the porous medium rather than the

boundary layer losses. Recently, Do and Suh(2011) derived

the wave damping rate for the wave propagating over a

multi-layered permeable seabed of finite depth.

In this study, we develop a theoretical model based on the

eigenfunction expansion method to simulate the propagation

of monochromatic waves over an porous bathymetry. We

extended the eigenfunction expansion method by including

the wave damping rate of waves propagating over a

permeable seabed of finite depth. Numerical experiments are

conducted for a permeable sea bed and permeable planar

slope with several wave frequencies.

2. Derivation of wave damping rate

We consider the waves propagating over a permeable

seabed of finite depth as presented in Fig. 1, in which  is

the water depth, and  is the width of the permeable bed. 

and  indicate the fluid region and permeable bed region,

respectively. Hereinafter, the numeric subscripts indicate the

variables in these regions.

Fig. 1. Definition sketch of permeable seabed of finite depth.

In the fluid, the Laplace equation with respect to the

velocity potential  and the linearized free surface boundary

conditions must be satisfied:

∇    (1)




  at    (2)







at    (3)

where ∇    with  and  being unit vectors in

 and  directions, respectively,  gravitational acceleration,

and  is the free surface elevation.

For a fully saturated soil in , which is assumed to be

incompressible, the continuity equation is:

∇⋅   (4)

where  is the velocity in the porous layer. The Darcy’s

law relates the velocity to the pressure gradient by

  


∇ (5)

where  is the permeability,  the dynamic viscosity of the

fluid, and  is the pressure inside the porous layer.

substituting Eq. (5) into Eq. (4) leads to

∇    (6)

Thus the pore pressure also satisfies the Laplace equation.

The velocity potential  and pore pressure  can be

assumed to be

  cosh   sinh   (7)



  cosh   sinh    (8)

where  is the wave number,  is the wave angular

frequency, and     . These solutions satisfy the Laplace

equations for  and . The unknown coefficients  to 

and the dispersion relationship can be obtained by using the

boundary conditions at the free surface and impermeable

stratum and the matching conditions at the interface between

fluid and soil.
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First, the bottom boundary condition is expressed as

   at      (9)

The continuity of pressure and vertical velocity across the

interface between fluid and soil requires that




  at    (10)




 





at    (11)

using the boundary condition at the impermeable stratum:




  at    (12)

Applying these matching conditions along with the surface

boundary conditions to Eqs. (7) and (8) yields the coefficients

 to  and the dispersion relationship as

  tanh  


 tanhtanh (13)

where  is the kinematic viscosity of the fluid. This

dispersion relationship is complex, yielding a complex ,

which may be written as

    (14)

The real part of  represents the real wave number related

to the wavelength, while the imaginary part determines the

spatial damping rate. In intermediate depth and shallow

water, the real and imaginary parts yield

  tanh
(15)

 



 sinh

 tanh (16)

If the depth of the permeable bed is very large, Eq. (16)

reduces to the wave damping rate of Reid and Kajiura(1957)

for an infinitely deep permeable bed.

3. Eigenfunction expansion method 

The two-dimensional motion of monochromatic, small

amplitude water waves in an inviscid and irrotational fluid of

arbitrary depth over a permeable bed of finite depth is

investigated. The waves are normally incident and propagate

in an infinitely long channel containing a two-dimensional

variable depth of finite width.

The eigenfunction expansion method is an extension of the

Takano(1960) formulation for the propagation of waves over

a rectangular sill. In the present formulation, we extended

the eigenfunction expansion method including the dissipating

effect by the porous bed of finite depth.

The solution starts with the definition of a velocity

potential:

  exp   ⋯ (17)

where  indicates the region,  is the wave number of

region, and  is the angular frequency. The velocity

potential should satisfy the Laplace equation:



 




 

   (18)

The free-surface boundary condition is:








   at    (19)

The condition of no flow normal to any solid boundary is:




  (20)

where  denotes the unity vector pointing into the fluid

domain, normal to the boundary defined by water depth. The

velocity potentials for the scattered waves must satisfy the

radiation condition.

The boundary value problem defined by Eq. (18), the

boundary conditions of Eqs. (19) and (20), and the radiation

condition can be solved with a solution in each region of the

form:

 
±cosh 

 
± 

 


 
  

∞


± cos 

±   
(21)

where superscripts + and - denote the right-going and the

left-going wave components, respectively. In the above

equation, 
 is the incident wave amplitude coefficient, 


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is the reflected wave amplitude coefficient, and 
 is the

transmitted wave amplitude coefficient. The coefficient  is

an amplitude function for the evanescent modes at the

boundaries, which are standing waves that decay

exponentially with distance from the boundary. The values of

the wave number for the propagating modes, 
 , are

determined from the dispersion relation:

  
tanh

   ⋯ (22)

and the wave numbers for the evanescent modes,  are

found from:

  tan   ⋯,   ⋯∞ (23)

The values of the damping rate, 
 can be obtained from Eq.

(16). In each region, a complete set of orthogonal equations

over the depth is formed by Eqs. (21) - (23).

To gain the full solution, matching conditions are applied

at each boundary between adjacent regions. In the absence of

a current, the matching conditions ensuring continuity of

pressure are:

   at    (24)

and continuity of horizontal velocity normal to the vertical

boundaries:







at    (25)

The matching conditions are applied over the vertical plane

between the two region:

In the step method a series of steps either up or down

are connected by a constant depth region followed by a

series of steps in the other direction. In this method, as in

the case of a trench or a sill, a domain with  regions will

contain   steps and boundaries. Each region has a

specified depth and each boundary between region has a

specified  location where the matching conditions must be

applied(Fig. 2).

At each boundary, the matching conditions are applied and

depend on whether the boundary is a step up or a step

down. With the incident wave specified, a set of equations

with    unknown coefficients is formed. In

this study, we included the first evanescent mode,   .

Fig. 2. Schematic sketch of an arbitrarily varying topography.

4. Results

4.1 Permeable shoal

Flaten and Rygg(1991) have examined the wave

propagation over a single-layer porous shoal. The thickness

of the shoal is described by the following equations(Fig. 3)

 










   
          

        

           
   

(26)

where  is the half height of the shoal crest,   , 

is the total length of the shoal, and  and  are the wave

length and water depth, respectively, outside the shoal. In

this study,    ,    , and      were

used, and three different values of permeability were tested:

  ,  × , and  × .

Fig. 3 Definition sketch of the porous shoal.

Fig. 4 compares the squared transmission coefficients

behind the shoal calculated by the present method and the

integral equation method of Flaten and Rygg(1991) as a

function of . The agreement between the two methods

is excellent, especially for the case of impermeable shoal of

  . It should be noted that short waves are not

influenced by the shoal if it is impermeable, see Fig. 4(a).

However, as the permeability of the shoal increases, short
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waves are more influenced than long waves, as shown in

figs. 4(b) and 4(c). As the waves become very short, the

influence of permeable bed upon surface water waves

diminishes so that the wave transmission coefficient bounces

back to increase.

0 5 10 15 20
l/h0

0.5

0.6

0.7

0.8

0.9

1

|KT|2

Integral Equation Method
Eigenfunction Expansion Method

(a)

0 5 10 15 20
l/h0

0.5

0.6

0.7

0.8

0.9

1

|KT|2

Integral Equation Method
Eigenfunction Expansion Method

(b)

0 5 10 15 20
l/h0

0

0.2

0.4

0.6

0.8

1

|KT|2

Integral Equation Method
Eigenfunction Expansion Method

(c)

Fig. 4. Squared transmission coefficient for periodic

waves over a shoal : (a)   ; (b)

   × ; (c)    × .

4.2 Permeable planar slope

We conducted numerical experiments for monochromatic

waves propagating over a permeable planar slope each end

of which was connected to a constant-depth impermeable

region(Fig. 5). The experimental condition is similar to the

case of submerged caisson breakwater armored with concrete

blocks in front of the vertical wall. Tests for impermeable

planar slope was first made by Booij(1983) who investigated

the accuracy of the mild-slope equation. The water depths

on the up- and down-wave sides of the slope are    m

and    m, respectively, and the width of the sloping

bottom  is varied so that the bottom slope varies. The

permeability of the porous slope is fixed as  × .

Tests were conducted with different wave frequencies of

     Hz to investigate wave reflections in a

broad range of relative water depth.

b

h1

h2

Fig. 5. Computational domain for numerical test of

waves propagating over a porous planar slope.

Fig. 6 compares the squared transmission coefficients

behind the porous slope calculated for several wave

frequencies. This shows that the transmission became

smaller for the longer slope width because the wave

dissipation is significantly affected by the width of porous

bed.. Moreover, as the wave frequency increased, the wave

transmission decreased. This confirms the results for the

permeable shoal.

0 2 4 6 8 10
b (m)

0

0.2

0.4

0.6

0.8

1

|K
T|2

f=0.35 Hz
f=0.5 Hz
f=0.75 Hz

Fig. 6. Squared transmission coefficient for several

wave frequency over porous planar slope.

Fig. 7 compares the reflection coefficient for several

frequencies. As the wave frequency increased, the wave

reflections decreased because the bottom was less felt in

deeper waters. Also, with the higher wave frequency, there

existed more numbers of resonant and non-resonant

reflections with the slope-width variation. For the case of

porous slope, the reflection coefficients were less than those

of solid bottom. Moreover, the numbers of resonant reflection

becomes smaller than those of solid bottom. These are
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caused by the delay of wave speed and energy dissipation

due to porous bottom. It should be noted that for the case of

   Hz, the reflection coefficients over the porous slope

is slightly higher than those of solid bottom for very long

slope, but the difference is very small.
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Fig. 7. Variation of reflection coefficients with

width of a planar slope : (a)    Hz,

(b)    Hz, (c)    Hz.

5. Conclusion

In this study, we applied the damping rate of waves

propagating over a permeable seabed of finite depth to the

eigenfunction expansion method which is able to include the

evanescent mode as well as the propagating mode. First, the

wave damping rate for a permeable bed was reviewed.

Furthermore, the derived wave damping rate was applied in

the eigenfunction expansion method to simulate a

monochromatic wave propagating over a porous bed.

The results of numerical model including the dissipation

term was compared with that of the integral equation method

of Flaten and Rygg(1991) to show good agreement. The

model was used to examine the wave transmission over the

planar slope of permeable seabed. It was found that in

general short waves are more influenced by the permeability

of the planar slope than long waves. We also applied the

numerical model to a porous planar slope. As a result, as the

wave frequency increased, the wave transmission decrease.

The reflection coefficients were also generally less than those

of solid bottom. The delay of wave speed and energy

dissipation made the numbers of resonant reflection smaller

than those of solid bottom.
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