• Title/Summary/Keyword: 고유특징 정규화 및 추출

Search Result 9, Processing Time 0.027 seconds

Gait-based Human Identification System using Eigenfeature Regularization and Extraction (고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템)

  • Lee, Byung-Yun;Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • In this paper, we propose a gait-based human identification system using eigenfeature regularization and extraction (ERE). First, a gait feature for human identification which is called gait energy image (GEI) is generated from walking sequences acquired from a camera sensor. In training phase, regularized transformation matrix is obtained by applying ERE to the gallery GEI dataset, and the gallery GEI dataset is projected onto the eigenspace to obtain galley features. In testing phase, the probe GEI dataset is projected onto the eigenspace created in training phase and determine the identity by using a nearest neighbor classifier. Experiments are carried out on the CASIA gait dataset A to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than previous works in terms of correct classification rate.

Heterogeneous Face Recognition Using Texture feature descriptors (텍스처 기술자들을 이용한 이질적 얼굴 인식 시스템)

  • Bae, Han Byeol;Lee, Sangyoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.208-214
    • /
    • 2021
  • Recently, much of the intelligent security scenario and criminal investigation demands for matching photo and non-photo. Existing face recognition system can not sufficiently guarantee these needs. In this paper, we propose an algorithm to improve the performance of heterogeneous face recognition systems by reducing the different modality between sketches and photos of the same person. The proposed algorithm extracts each image's texture features through texture descriptors (gray level co-occurrence matrix, multiscale local binary pattern), and based on this, generates a transformation matrix through eigenfeature regularization and extraction techniques. The score value calculated between the vectors generated in this way finally recognizes the identity of the sketch image through the score normalization methods.

Block Classification of Document Images Using the Spatial Gray Level Dependence Matrix (SGLDM을 이용한 문서영상의 블록 분류)

  • Kim Joong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1347-1359
    • /
    • 2005
  • We propose an efficient block classification of the document images using the second-order statistical texture features computed from spatial gray level dependence matrix (SGLDM). We studied on the techniques that will improve the block speed of the segmentation and feature extraction speed and the accuracy of the detailed classification. In order to speedup the block segmentation, we binarize the gray level image and then segmented by applying smoothing method instead of using texture features of gray level images. We extracted seven texture features from the SGLDM of the gray image blocks and we applied these normalized features to the BP (backpropagation) neural network, and classified the segmented blocks into the six detailed block categories of small font, medium font, large font, graphic, table, and photo blocks. Unlike the conventional texture classification of the gray level image in aerial terrain photos, we improve the classification speed by a single application of the texture discrimination mask, the size of which Is the same as that of each block already segmented in obtaining the SGLDM.

  • PDF

The Implementation of Face Recognition System for Intelligent Surveillance (지능형 영상 보안을 위한 얼굴 인식 시스템 구현)

  • Kim, Su-Hyun;Jeong, Chang-sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1401-1403
    • /
    • 2013
  • 사건 발생 후의 대응이 아닌 영상 분석을 통해 실시간으로 위협 상황에 대응할 수 있는 지능형 영상 보안 기술이 매우 중요한 이슈가 되고 있다. 본 논문에서는 지능형 영상 보안에 사용할 수 있는 실시간 얼굴 인식 및 추적 기법을 제안한다. 사람의 정면 얼굴 영상을 ASM(Active Shape Model) 알고리즘을 이용하여 정규화 시키고 Gabor Wavelet Filter를 이용하여 얼굴 고유 특징 벡터를 추출하여 인식에 사용하였다. 인식이 완료된 얼굴은 Camshift와 Kalman Filter를 이용하여 카메라 감시 영역에서 벗어날 때까지 강건한 추적을 통하여 관리자가 실시간으로 확인 및 대응할 수 있게 하였다.

Bearing Faults Identification of an Induction Motor using Acoustic Emission Signals and Histogram Modeling (음향 방출 신호와 히스토그램 모델링을 이용한 유도전동기의 베어링 결함 검출)

  • Jang, Won-Chul;Seo, Jun-Sang;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes a fault detection method for low-speed rolling element bearings of an induction motor using acoustic emission signals and histogram modeling. The proposed method performs envelop modeling of the histogram of normalized fault signals. It then extracts and selects significant features of each fault using partial autocorrelation coefficients and distance evaluation technique, respectively. Finally, using the extracted features as inputs, the support vector regression (SVR) classifies bearing's inner, outer, and roller faults. To obtain optimal classification performance, we evaluate the proposed method with varying an adjustable parameter of the Gaussian radial basis function of SVR from 0.01 to 1.0 and the number of features from 2 to 150. Experimental results show that the proposed fault identification method using 0.64-0.65 of the adjustable parameter and 75 features achieves 91% in classification performance and outperforms conventional fault diagnosis methods as well.

Development of Vehicle Classification Algorithm Using Magnetometer Detector (자석검지기를 이용한 차종인식 알고리즘개발)

  • 김수희;오영태;조형기;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.4
    • /
    • pp.111-124
    • /
    • 1999
  • The Purpose of this thesis is to develop a vehicle classification algorithm using single Magnetometer detector during presence time of vehicle detection and is to examine a held application from field test. We collected data using Magnetometer detector on freeway and used digital data to change voltage values according to magnetic flux density in analysis. We collected these datum during the presence time and then obtained characteristics from wave form in these datum. Based on these characteristics, We used the following three methods for this a1gorithm :1. Template Matching Method,2. Neural Network Method using Back-propagation Algorithm 3. Complex Method using changed slope points and mixing method 1, 2. Of course, Before processing of over three methods, These data were processed normalizing by 20, 40 of size in only X axis and moving average by 0, 3, 4, 5 of size. Vehicle classification were Processed in three steps ; 2, 3, 5 types classification. In 2 types vehicle classification, recognition rate is 83% by template matching method.

  • PDF

Wavelet based Fuzzy Integral System for 3D Face Recognition (퍼지적분을 이용한 웨이블릿 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak;Shim, Jae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.616-626
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial feature information and the face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple frequency domains for each depth image and depth fusion using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. It is used as the reference point to normalize for orientated facial pose and extract multiple areas by the depth threshold values. In the second step, we adopt as features for the authentication problem the wavelet coefficient extracted from some wavelet subband to use feature information. The third step of approach concerns the application of eigenface and Linear Discriminant Analysis (LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) show the highest recognition rate among the regions, and the depth fusion method achieves 98.6% recognition rate, incase of fuzzy integral.

A Robust Hand Recognition Method to Variations in Lighting (조명 변화에 안정적인 손 형태 인지 기술)

  • Choi, Yoo-Joo;Lee, Je-Sung;You, Hyo-Sun;Lee, Jung-Won;Cho, We-Duke
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.25-36
    • /
    • 2008
  • In this paper, we present a robust hand recognition approach to sudden illumination changes. The proposed approach constructs a background model with respect to hue and hue gradient in HSI color space and extracts a foreground hand region from an input image using the background subtraction method. Eighteen features are defined for a hand pose and multi-class SVM(Support Vector Machine) approach is applied to learn and classify hand poses based on eighteen features. The proposed approach robustly extracts the contour of a hand with variations in illumination by applying the hue gradient into the background subtraction. A hand pose is defined by two Eigen values which are normalized by the size of OBB(Object-Oriented Bounding Box), and sixteen feature values which represent the number of hand contour points included in each subrange of OBB. We compared the RGB-based background subtraction, hue-based background subtraction and the proposed approach with sudden illumination changes and proved the robustness of the proposed approach. In the experiment, we built a hand pose training model from 2,700 sample hand images of six subjects which represent nine numerical numbers from one to nine. Our implementation result shows 92.6% of successful recognition rate for 1,620 hand images with various lighting condition using the training model.

Removing SAR Speckle Noise Based on the Edge Sharpenig Algorithm (경계선 보존을 기반으로 한 SAR 영상의 잡영 제거 알고리즘에 대한 연구)

  • 손홍규;박정환;피문희
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.3-8
    • /
    • 2003
  • 모든 SAR 영상에는 전자기파 간의 간섭으로 인한 스페클 잡영(speckle)이 존재하며, 이를 제거하는 것은 양질의 SAR 영상을 얻기 위한 필수적인 전처리 과정 중 하나라고 할 수 있다. 그러나 이러한 스페클 잡영을 제거하기 위하여 기존에 제안되었던 알고리즘은 잡영은 효과적으로 감소시키는 반면 경계선과 같은 영상의 고유 정보까지 함께 감소시키는 한계가 있었다. 따라서 본 연구에서는 SAR 영상의 경계선은 보존시키면서 영상으로부터 불필요한 잡영을 제거할 수 있는 알고리즘을 구현하고, 기존의 알고리즘과 비교하여 그 효율성을 평가하고자 한다. 영상의 통계적 특성에 근거하는 기존의 알고리즘과는 달리 웨이블렛 변환(Wavelet transform)으로 경계선 및 특징 정보의 여부를 판별한 후 평균 필터(mean filter)를 적용하는 경계선 보존(edge sharpening) 알고리즘은 경계 정보의 신뢰성을 향상시킬 수 있으며, 1차원 필터를 수평, 수직, 대각선, 역대각선 방향으로 적용함으로써 하나의 영상소를 중심으로 모든 방향에 대한 경계선 여부를 확인할 수 있는 장점이 있다. 본 연구에서는 512 × 512로 절취한 1-look SAR 영상에 대하여 창 크기 5 × 5의 경계선 보존 필터를 적용하고 동일영상에 대하여 기존의 Lee, Kuan, Frost 필터 등의 실험결과를 비교함으로써 그 적합성을 판단하고자 하였다. 실험결과에 대한 수치적인 평가는 ①정규화 평균을 이용하여 평균값의 보존 여부, ②편차 계수를 이용한 스페클 잡영의 제거 여부, ③경계선 보존지수(EPI)를 이용한 경계선의 보존 정도를 통해 이루어졌다. 본 연구의 실험결과를 통해 경계선 보존 필터는 평균값의 보존 여부 및 스페클 잡영 제거 정도에 있어 다른 필터들과 큰 차이가 없지만 경계선보존지수는 다른 필터들에 비하여 가장 우수함을 확인할 수 있었다.rbon 탐식효율을 조사한 결과 B, D 및 E 분획에서 유의적인 효과를 나타내었다. 이상의 결과를 종합해볼 때, ${\beta}$-glucan은 고용량일 때 직접적으로 또는 $IFN-{\gamma}$ 존재시에는 저용량에서도 복강 큰 포식세로를 활성화시킬 뿐 아니라, 탐식효율도 높임으로써 면역기능을 증진 시키는 것으로 나타났고, 그 효과는 crude ${\beta}$-glucan의 추출조건에 따라 달라지는 것을 알 수 있었다.eveloped. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.뢰, 결속 등 다차원

  • PDF