• Title/Summary/Keyword: 고유진동형

Search Result 307, Processing Time 0.03 seconds

Theoretical investigation of vibrational characteristics of a multi-layered piezoelectric element for ultrasonic transducers (초음파 탐촉자용 다층 압전접합체의 진동특성에 관한 이론적 해석)

  • Jang Hwan Soo;Roh Yongrae
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.383-386
    • /
    • 1999
  • 본 연구에서는 공중용 초음파 센서에 많이 사용되고 있는 원판형 압전소자, 정합층, 그리고 후면충, 세 부분으로 이루어진 다층 접합체의 진동 특성을 기계적 진동 방정식을 이용하여 이론적으로 해석하였으며, 해석결과의 타당성을 유한요소 해석방법을 사용하여 검증하였다. 본 연구의 해석 방법은 다층 판, 특히 압전세라믹과 정합층으로 이루어진 2층과 후면층이 추가된 3층에 대한 진동 방정식에 적절한 경계 조건 및 수렴조건을 적용하여 고유진동 주파수를 유도하였다. 그리고 이를 이용하여 초음파 탐측자 개발 시 널리 사용되고 있는 설계변수 즉, 각 층의 반경, 두께, 밀도, 그리고 영률의 변화에 대한 공진주파수의 변화 경향을 분석하였다. 공진주파수 변화 경향에 대한 이 해석 방법의 타당성을 널리 사용되고 있는 유한 요소해석법을 사용하여 검증한 결과, 두 해석결과는 좋은 일치를 보였다. 그러므로 본 연구의 결과는 종래의 등가회로나 유한요소 해석법에 비해 더 간편하고, 더 정확한 해석결과를 제공할 수 있는 해석도구로써 이용될 수 있을 것이다.

  • PDF

Free Vibration Analysis of Parabolic Hollowed Beam-columns with Constant Volume (일정체적을 갖는 포물선형 중공 보-기둥의 자유진동 해석)

  • Lee, Tae-Eun;Lee, Byoung-Koo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2011
  • This paper deals with free vibrations of the parabolic hollowed beam-columns with constant volume. The cross sections of beam-column taper are the hollowed regular polygons whose depths are varied with the parabolic functional fashion. Volumes of the objective beam-columns are always held constant regardless given geometrical conditions. Ordinary differential equation governing free vibrations of such beam-columns are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam-column parameters such as end constraints, side number, section ratio, thickness ratio and axial load are reported in tables and figures.

Characteristics of the Radial Vibration of Cylindrical Piezoelectric Transducers (원통형 압전 변환기의 방사진동 특성 연구)

  • 황교광;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1202-1209
    • /
    • 2002
  • This paper presents the characteristics of the radial vibration of cylindrical piezoelectric transducers. The differential equations of piezoelectric radial motion have been derived in terms of the radial displacement and electric potential, which are functions of the radial and axial coordinates. Applying mechanical and electrical boundary conditions has yielded the characteristic equation of radial vibration. Numerical results of the natural frequencies have been compared with the experimental observations reported earlier for the transducers of several sizes, and have shown a good agreement for the fundamental mode. The paper discusses the dependence of the natural frequencies on the radius and thickness of the piezoelectric cylinders and the difference between Piezoelectric and elastic resonances

  • PDF

Torsional Vibration Characteristics of Nonuniform Circular Rods (불균일 원형 봉의 비틀림 진동 특성)

  • 정형곤;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.609-616
    • /
    • 2001
  • The vibrational characteristics of nonuniform circular rods have been studied theoretically and experimentally in this paper. The differential equation of torsional motion expressed in terms of the angular displacement has been solved exactly and approximately for a stepped circular rod and for a conically-tapered rod. Solutions of the boundary-value problem have yielded the natural frequencies, mode shapes and forced responses of the rods. The theoretical solutions of forced response have been verified by comparing them with experimental ones.

  • PDF

Dynamic Analysis for Railway Bridge Considering Urban Maglev Train (도시형 자기부상열차 하중을 고려한 철도교량 동적해석)

  • Kim, Jung-Hun;Cha, Kyung-Ryul;Lee, Ung-Hee;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.481-484
    • /
    • 2011
  • 최근 철도는 미래의 핵심교통수단이자 저탄소 녹색성장을 대표하는 교통수단으로 주목받고 있다. 그 중 자기부상열차는 바퀴 마찰에 따른 소음 진동 분진이 없는 차세대 교통수단이며, 이를 지지하는 구조물(교량)은 열차의 운행 안정성(동적거동)을 고려한 설계가 필요하다. 또한, 상부 구조물은 자기부상열차의 연행이동등분포하중을 지지하며, 이러한 하중조건을 갖는 차량이 운행할 때 상부 구조물은 설계기준사항들을 만족해야한다. 도시형 자기부상철도 토목구조물 설계기준에 의하면 도시형 자기부상철도의 운행 안정성(동적거동)을 평가하기 위한 항목들로 대상 구조물의 고유진동수, 승차감을 고려한 연직처짐 등이 요구된다. 따라서, 본 연구에서는 자기부상열차의 실 열차하중을 고려하여 연행이동등분포하중으로 철도교량의 동적거동을 검토하였으며, 설계기준을 적용하여 대상 철도 교량의 운행 안정성을 평가하였다.

  • PDF

Stability Analysis on Solar Tracker Due to Wind (바람에 기인하는 태양광추적구조물의 안정성 해석)

  • Kim, Yong-Woo;Lee, Seoung Yeal
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.216-222
    • /
    • 2013
  • A solar power generator is usually installed outdoors and it is exposed to extreme environments such as heavy fall of snow and high speed wind. Therefore, the solar tracker structure should be designed to have sufficient static and dynamic stiffness against such environmental conditions. In this paper, eigenvalue analysis of the solar tracker is carried out by varying the pose of the solar panel and unsteady flow analysis around a single tracker or multi-trackers arranged in a line is performed by varying the parameters such as wind directions, wind speeds and the pose of the solar panel to evaluate whether there exists an instability of resonance due to vortex shedding. Finite element eigenvalue analysis shows that natural frequencies and modes are almost not influenced by the pose of the solar panel and the finite element flow analysis shows that there does not exist periodic vortex shedding due to the flow around single tracker or multiple solar trackers in a line.

Free Vibration Analysis of Parabolic Strip Foundations (포물선형 띠기초의 자유진동 해석)

  • Lee, Tae-Eun;Lee, Jong-Kook;Kang, Hee-Jong;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.703-706
    • /
    • 2005
  • Since soil structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil structure interactions had been carried out. One of typical structures related to the soil structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint this paper aims to theoretically investigate dynamics of the parabolic strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out o plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of free-free end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of nonlinear equation.

  • PDF

Vibration Characteristic of a Cylindrical Rod according to the Mounting Locations on the Grid Support Structure (격자 지지구조체에 묶여있는 실린더 형 봉의 삽입위치에 따른 진동특성)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Jae-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.515-518
    • /
    • 2006
  • A vibration test for a cylindrical rod inserted on the grid support structure was tested using the sine sweep excitation method with closed loop force control. The effect of the mounting location of a test rod on the vibration characteristics of a rod continuously supported by the full size($16{\times}16$) grid support was identified. An electromagnetic vibration shaker, non-contact displacement sensor and HP/VXI data acquisition device were used and TDAS software was also used as a data sampling and processing tools. The natural frequencies and mode shape of the test rod were consistent with the previous works of a rod vibration test with partial grids($3{\times}3,\;5{\times}5\;and\;7{\times}7$). The frequency characteristics of the rod according to the mounting location were shown clear discrepancies, but mode shapes were nearly same. As the test rod closes to the bottom clamping region of the spacer grid, peak vibration amplitudes of the rod become smaller.

  • PDF

Damage Location Detection of Shear Building Structures Using Mode Shape (모드형상을 이용한 전단형 건물의 손상 위치 추정)

  • Yoo, Suk Hyeong;Lee, Hong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 2013
  • Damage location and extent could be detected by the inverse analysis on dynamic response of the damaged structure. In general, detection of damage location is possible by the observation of the mode shape difference between undamaged and damaged structure and assessment of stiffness reduction is possible by the observation of the natural frequency difference of them. The study on damage detection by the dynamic response in civil structures is reported enough and in practical use, but in building structures it is reported seldom due to several problems. The purpose of this study is to present the damage detection method on shear building structures by mode shape. The damage location index using 1st mode shape is observed theoretically to find out damage location. The damage detection method is applied to numerical analysis model such as MATLAB and MIDAS GENw for the verification. Finally the shaking table test on 3 story shear building is performed for the examination of the damage detection method. In shaking table results, as the story stiffness decrease by 25% the 1st mode frequency increase by 12%, and the damage location index represents minus at damaged story.

Dynamical Behavior of Bidirectional Monolithic Nd:YAG Ring Laser (양방향으로 발진하는 일체형 Nd:YAG 고리레이저에서의 출력변조현상)

  • 홍정미;손승현;송홍주;길상근;이재철
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.115-121
    • /
    • 1995
  • 본 논문에서는 일체형, Nd:YAG 고리 레이저에서 서로 반대방향으로 진행하는 두 모드의 비선형적인 상호작용에 의한 출력 불안정 현상을 조사하였다. 실험을 통하여 두 모드가 각각 단일 종모드로 발진함을 확인하였고, 레이저가 발진하는 임계치 부근의 낮은 펌핑수준을 유지하여 다중모드간의 경쟁이나 단방향 발진에 의한 출력 불안정이 아님을 확인하였다. 또한 잘 알려진 시스템 고유의 감쇄진동과 구별되는 현상임을 보였다. 두 모드간의 손실차가 클수록 이 출력의 변조주파수는 증가하고 변조폭이 줄어 들어 안정화 되며 단방향 발진이 일어난다.

  • PDF