• Title/Summary/Keyword: 고온 연료 분사

Search Result 43, Processing Time 0.031 seconds

The Effect of HHO Gas on the Performance of Industrial Diesel Engine Using Biodiesel Blended Fuel (흡기중의 HHO 가스 첨가가 바이오 디젤 혼합연료를 사용한 산업용 디젤기관의 성능에 미치는 영향)

  • Park, Kweon-Ha;Kim, Ju-Youn;Kim, Chul-Jung;Lee, Eun-June;Son, Kwon;Park, Sung-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1022-1027
    • /
    • 2011
  • A diesel engine works in high compression ratio due to injection of diesel fuel after compression of air. Therefore the engine has a high thermal efficiency, while nitrogen oxide is produced a lot in high flame temperature regions. In order to solve the problem this study HHO gas is added into the intake air of the industrial diesel engine. The test conditions are loads of 0%, 50% and 100% and engine speeds of 700 to 1900 rpm. The results show the maximum torque and pressure is increased, fuel consumption, smoke and CO emissions are decreased and NOx emission is remained at same level.

A Study on the Spontaneous Ignition of the Fuel Injected into a Hot Air Stream - Additional Report: Utilization of Diesel Oil and Emulsified Fuel- (高溫空氣流 에 噴射한 噴霧 의 自然燃燒 에 관한 硏究 -속보 : 경유 및 유화핵연료 사용-)

  • 방중철;태전간랑
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.627-637
    • /
    • 1985
  • The combustion process and the performance of a diesel engine are seriously affected by the ignition delay period of the fuel used. Some methods for improving the combustion process in the engine cylinder are to well match the strength of air swirl with the space of sprays in the cylinder, to blend an ignition improver in the fuel, to inject a small amount of auxiliary fuel prior to main injection and so on. Recently, the improvement of fuel economy and the reduction of exhaust smoke and NO have been successfully achieved by supplying diesel engines with emulsified fuel. However, it is very difficult to know real combustion mechanism under such special conditions, because of many factors affecting on the combustion process in practical reciprocating engine. In the present paper, the combustion processes of diesel fuel and emulsion fuel were tried to improve and to observe by making contact with various lean pre-mixtures in the hot air stream duct. This hot air stream method has an advantage that the spontaneous combustion process can be observed under a simplified condition.

Development of a Liquid Rocket Engine Fuel-Rich Gas Generator (액체로켓용 연료 과농 가스발생기 개발)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.38-45
    • /
    • 2007
  • A liquid rocket engine fuel-rich gas generator has been developed for the first time in the country, which can produce combustion gas over the rate of 4 kg/s at 900 K and 58 bar. The gas is not only for driving a turbopump but also for providing heat source for propellant supply tanks. The final design of the gas generator had been fixed based on the concept and preliminary development tests, and was validated through structure and heat transfer analysis. The manufacturing involved precision machining, surface finish, and special welding technique. The final assessment on the characteristics of ignition and combustion had been carried out for two different versions of injector heads. This concluded that the present product satisfies the development requirements such as spatial temperature distribution and the development has been successful.

A Study on the Effect of Inflammable Materials on the Control Characteristics of Thermal and Smoke Fluid of Water Curtain System (가연성 물질에 따른 워터커튼 시스템의 열 및 연기유동 제어특성에 관한 연구)

  • You, Woo-Jun;Nam, Jun-Seok;Kim, Dong-Joon;Lee, Jeong-Kyoon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.53-58
    • /
    • 2012
  • In this study fire control characteristics for inflammable materials of water curtain system are experimentally analyzed. Heat release rate for pinewood and gasoline was calculated using Room Corner Tester (RCT) and fire test apparatus for water curtain system is manufactured. Nozzles (180 degree of injection angle, 8.2 mm of orifice diameter) are installed at the nearby ceiling of place at 5 m distance from fire originate and temperature profile as well as transmission are obtained from the fire experiment of pinewood and gasoline in the water curtain system. Based on the results, parameters of engineering importance for fire control characteristics of water curtain system such as generation of high temperature smoke and thermal phenomena of fluid flow by injection nozzle are identified.

An Experimental Study on Che Spray Characteristic of Pintle Type Nozzle in a High Temperature and High Pressure Chamber (고온.고압용기 내에서 핀틀노즐의 분무특성에 관한 실험적 연구)

  • 송규근;정재연;정병국;안병규;오은탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • The characteristics of fuel spray have an important effect on engine performance such as power, specific fuel consumption and emission because fuel spray controls the mixing and combustion process in an engine. Therefore, if the characteristics of fuel spray can be measured, they can be effectively used for improving engine performance. The major factors controlling fuel spray are injection pressure, ambient pressure and engine speed. In this study, the experiment is performed in a high temperature and high pressure chamber. In experiments, spray tip penetration, spray angle and spray tip velocity are measured at various injection pressure (10 and 14 MPa), ambient pressure(3,4 and 5 MPa), fuel pump speed(500, 700 and 900 rpm). Experimental results are useful for deriving an experimental spray equation and design an optimal engine. The results showed that injection pressure, ambient pressure and fuel pump speed are important factors influencing on the characteristics of spray. 1) Injection pressure influences on the characteristics of spray. That is, as injection pressure is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle and spray penetration are increased as fuel pump speed is increased.

Characteristics of the Spray and Combustion in the Liquid Jet (고온, 고속기류 중에 수직 분사되는 연료제트의 분무 및 연소특성)

  • Youn, H.J.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.12-17
    • /
    • 2002
  • In this paper, spray and combustion characteristics of a liquid-fueled ramjet engine were experimentally investigated. The spray penetrations were measured to clarify the spray characteristics of a liguid jet injected transversely into the subsonic vitiated airstream, which is maintained a high velocity and temperature. The spray penetrations are increased with decreasing airstream velocity, increasing airstream temperature, and increasing air-fuel momentum ratio. To compensate our results of penetrations, the new experimental equation were modified from Inamura's equation. In the case of insufficient penetration, the combustion phenomenon in ram-combustor were unstable. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length and air temperature of the combustor became longer. Combustion efficiency increased when the length of the combustor was long and the air temperature was high. Especially, stable flame region is enlarged when the length of the combustor was long and the air temperature was high. Type Abstract here. Type Abstract here.

  • PDF

Linear Acoustic Waves in Baffled Rocket Combustion Chambers (배플이 달린 로켁 연소실내의 음향 효과)

  • Yoon, Myong-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.105-112
    • /
    • 1996
  • A linear acoustic analysis for baffled rocket combustion chambers has been developed. This study provides the comprehensive theoretical background for the baffle as one of the stabilizing devices in a liquid rocket propulsion system. Several specific effects of baffles are presented as mechanisms by which baffles eliminate instability. Included are longitudinalization of transverse waves inside baffle compartments, severe restriction of velocity fluctuations near the injector face, and decreased normal mode frequency of the chamber.

  • PDF

A Study on the Flow Entrainment Characteristics of a Coaxial Nozzle Used in a MILD Combustor with the Change of Nozzle Position and Flow Condition (MILD 연소로에서 노즐의 위치와 유동 조건에 따른 유입량 특성에 관한 연구)

  • Shim, Sung-Hoon;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • A MILD (Moderate and Intense Low oxygen Dilution) combustor decreases NOx formation effectively during the combustion process and NOx formation is affected significantly by the exhaust gas entrainment rate toward fuel and air. The present study focused on the new MILD combustor, which has coaxial cylindrical tube. The outside tube of the new MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. The connection pipe is set between the outer side and the inner side tubes and coaxial air nozzle is inserted at the center of the connection pipe. A numerical analysis is accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of air nozzle exit velocity, nozzle diameter, nozzle exit position and exhaust gas side pressure. The entrainment rate is proportional to the square root of air nozzle exit velocity and negatively proportional to the pressure difference between the exhaust gas side and furnace side pressures. The effect of air nozzle exit position is not considerable on the exhaust gas entrainment.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

A Study of Downsizing Effect on Turbocharged LPG Direct Injection(T-LPDI) Engine with Startability Improvement by Optimization of Fuel Control System (LPG 직분사 엔진의 다운사이징 효과 및 시동성 개선을 위한 연료 제어시스템 최적화에 관한 연구)

  • Lim, Jongsuk;Kim, Dowan;Park, Hanyong;Song, Jinoh;Han, Junghwan;Yook, Chulsoo;Park, Seongmin;Shin, Yongnam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.619-626
    • /
    • 2016
  • The new 1.4 L turbocharged LPG direct injection (T-LPDI) engine is presented in this paper to improve the fuel efficiency of the vehicles installed with the 2.0 L LPG port fuel injection (LPI) engine, while maintaining the performance as a downsizing concept for the new engine platform development. Firstly, the return type high pressure LPG fuel supply system is designed and mounted in the new 1.4 L T-LPDI engine. As a result, this new engine shows a much better WOT performance and approximately 8 % of improved fuel economy level, as compared to the 2.0 L LPI vehicle. Secondly, the LPDI engine specific optimized design for high pressure fuel components and fuel injection control strategies are proposed and evaluated in order to overcome the restartability problem in a heat-soaked condition called the vapor lock phenomenon. Consequently, these experimental results illustrate a great potential for the developed 1.4 L T-LPDI engine as a possible substitute for the 2.0 L LPI engine.