• Title/Summary/Keyword: 고온 연료 분사

Search Result 43, Processing Time 0.033 seconds

Combustion Characteristics of Emulsified C-heavy Oil in Constant Volume Combustion with High Temperature and Pressure (고온.고압의 정적연소에서 C-중유 에멀젼 연료의 연소특성)

  • Yoo, Dong-Hoon;Nishida, Osami;Fujita, Hirotsugu;Lim, Jae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.243-249
    • /
    • 2010
  • The improvement of fuel economy and the reduction of diesel exhaust PM(Particulate Matter) and $NO_X$ have been successfully achieved by supplying diesel engines with emulsified diesel oil. However, combustion analysis of emulsified C-heavy oil is difficult because the combustion characteristics of emulsified C-heavy oil compared to other fuels have a special form. Therefore, these experimental researches have analyzed the combustion characteristics of emulsified C-heavy oil in a chamber with high pressure and temperature. The pressure and the rate of heat releases in a combustion chamber was decreased with increasing the water content and the ignition delay time was increased with increasing the water percent.

A Study on NOx Reduction of a Medium Speed Diesel Engine Using a Charge Air Moisturizer System (흡기가습 시스템을 이용한 중형엔진의 NOx 저감 기술 연구)

  • Park, Hyoung-Keun;Ha, Ji-Soo;Ghal, Sang-Hak;Park, Jong-Il;An, Kwang-Hean
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.21-22
    • /
    • 2006
  • 디젤엔진에서 배출되는 배기가스 중의 주요 오염물질 중의 하나인 NOx(질소산화물)는 대부분 고온의 연소 과정에서 발생하고, 발생량은 연소온도에 따라 결정되는 것으로 알려져 있다. 또한 연료의 연소 중에 물이 첨가되면 연소공기의 비열 증가에 의하여 연소온도가 감소하여 NOx 발생량이 급격하게 감소하게 되는데, 연소실에 물을 첨가하는 방법으로는 유화연료, 직접물분사, 흡기가습 등이 있다. 이중 흡기가습은 구조가 간단하면서 NOx 저감효율이 가장 높은 것으로 알려져 있다. 본 연구는 당사 고유모델 중형엔진인 힘센엔진에 흡기가습 기술을 적용하여 연소성능 및 NOx 저감효과 등을 시험하고, 흡기가습 시스템의 상용화 모델 개발을 위한 기초 데이터를 확보하기 위해 수행되었다.

  • PDF

Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine (단기통 디젤엔진에서 함정용 디젤유의 전·후 분사시기가 연소 및 배출가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.868-876
    • /
    • 2014
  • The objective of this study is focused on the analyzing combustion, carbon monoxide and hydrocarbon emission characteristics of marine diesel oil, utilized for naval propulsion engine, with varying pre-post injection timing of an optically accessible single cylinder engine. And also the combustion process is analyzed by means of a high speed camera visualization. On the result of retarding pre-injection timing toward main injection timing, the mean effective pressure and maximum pressure of combustion chamber are increased; however, the heat release rate is decreased. Furthermore, the emission rates of carbon monoxide and hydrocarbon are reduced in this case. In hence, when a post-injection timing is advanced, the mean effective pressure and maximum pressure are increased, because the combustion has been performed under the high temperature and high pressurized environment during main injection time, and the emission rates of carbon monoxide and hydrocarbon are increased. From the experimental results, it considered that retarding of pre-injection timing affects to shorten the ignition delay of main injection clearly, and to raise the flame intensity comparing to the advanced state. The ignition delay during post-injection is not appeared at any post-injection time, but the flame intensity has been weakened gradually according to the retarding of post-injection timing.

Study of spatial temperature distribution during combustion process in a high temperature and pressure constant volume chamber (고온 고압 정적 연소실에서 연소과정에 따른 온도 분포 측정)

  • Kim, Ki-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.345-350
    • /
    • 2017
  • Downsizing is widely applied to diesel engines in order to improve fuel efficiency and reduce exhaust emissions. Engine sizes are becoming smaller but pressure and temperature inside combustion chambers are increasing. Therefore, research for fuel spray under high pressure and temperature conditions is important. A constant volume chamber which simulates high temperature and pressure likely to be found in diesel engines was developed in this study. Pressure and temperature were increased abruptly because of ignition of the pre-mixture in the constant volume chamber. Then pressure and temperature were gradually decreased due to the heat loss through the chamber wall. Fuel spray occurred when temperature and pressure were reached at the target condition. In this experiment, the temperature condition should be exactly defined to understand the relation between fuel evaporation and ambient temperature. A fast response thermocouple was developed and used to measure the temporal and spatial temperature distribution during the combustion process inside the combustion chamber. In the results, the core temperature was slightly higher than the bulk temperature calculated by the gas equation. Ed-note: do you want to say 'ideal gas equation'? This was attributed to the heat transfer loss through the chamber wall. The vertical temperature deviation was higher than the horizontal temperature deviation by 5% which resulted from the buoyancy effect.

A Study on a High-Temperature/High-Pressure Washing System in which High-Temperature Water is Generated in a Low-Pressure Boiler and High-Pressure Water is Generated Thereafter in a Compressor (저압보일러에서 고온의 온수 생성 후 압축기에서 고압수를 생성하는 고온·고압 세척시스템에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.94-100
    • /
    • 2019
  • This study was conducted on a high-temperature/high-pressure washer in which low-pressure cold water in a boiler is heated to a temperature range of $70{\sim}80^{\circ}C$ by supplying diesel combustion heat. The high-temperature water is sent to a compressor to increase its pressure to 200 bar, thereby making high-temperature/high-pressure water, which is sprayed through a spray nozzle. In the results of this study, the spray temperature of the high-pressure washing was shown to be the highest when the ratio between the actual amount of combustible air and the theoretical amount of air was 1:1 and the energy consumption rate of the low-pressure boiler type high-pressure washer was shown to be much lower than that of the high-pressure boiler type high-pressure washer.

A Study on the Performance Prediction of Fire Extinguish System in Aircraft Engine Bay (항공기 엔진베이 내 소화장치 성능예측을 위한 연구)

  • Park, Young-Ha;Kim, Hyung-Sik;Kim, Jin-Han;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.718-725
    • /
    • 2012
  • Fuel or oil which is leaked into the aircraft engine bay can make a fire when it is contacted to the engine surface of hot temperature. In order to avoid fire, the fire extinguish system should be designed so that the extinguishing agent is quickly injected and its concentration keeps higher in the fire protection region. FAA requires that the extinguishing agent injected within the fire protection region should be sustained longer than 0.5 second on keeping a higher concentration than 6%. For developing a fire protection system satisfying the FAA regulation, numerical and experimental studies for the injection time and the concentration of the extinguishing agent were conducted. These results showed similar trend for the injection time or concentration, but the data acquisition was delayed due to the response of the sensors in the experiment.

Numerical Study for the Reacting Characteristics of Orimulsion Gasification (오리멀젼의 가스화 반응 특성에 관한 수치해석 연구)

  • 나혜령;이진욱;윤용승
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.309-316
    • /
    • 1999
  • A numerical study for the turbulent reacting flow in an orimulsion gasifier has been carried out to analyze the characteristics of chemical reaction by orimulsion droplets. In this study, our interest has been focused on the effect of oxidizer to orimulsion ratio, which is one of the key parameters of gasification operation, as well as on the distribution of chemical species. In addition, we have conducted numerical calculations to understand the effect of droplet size, spray angle and injection velocity of fuel so as to acquire the basic information on the operating range of orimulsion gasifier. The result of numerical calculations showed that the gas composition of CO and H$_2$concentrations was the highest when the oxidizer to orimulsion ratio was about 0.88 and the reactivity of orimulsion increased as the droplet size reduced with proper spray angle. Also, we have carried out the analysis on the orimulsion gasification in the 100 ton/day-scale gasifier based upon the prior study in order to obtain the basic data for the proper operating condition using orimulsion feed.

  • PDF

Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR (저압 SCR을 위한 디젤발전기 배기가스 온도 변화)

  • Hong, Chul Hyun;Lee, Chang Min;Lee, Sang Duk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.355-362
    • /
    • 2021
  • To facilitate low-pressure selective catalyst reduction (L.P SCR), a high exhaust-gas temperature of a four-stroke diesel engine for a ship's generator is required. This study aimed at reducing the exhaust-gas temperature by adjusting the valve open-close timing and fuel injection timing to satisfy the operating conditions of L.P SCR and prevent accidents associated with the generator engine due to high temperature. To lower exhaust-gas temperature, the angle of the camshaft was adjusted and the shim of the fuel injection pump was added. As a result, the maximum explosion pressure increased and the average of the turbocharger outlet temperature dropped. Considering the heat loss from the turbocharger outlet to the SCR inlet, the operation condition for L.P SCR was satisfied with 290 ℃. The study demonstrates that safe operation of a diesel generator can be achieved by lowering the exhaust-gas temperature.

Subscale high altitude simulation test using solid propellant gas generator (고체추진제 가스발생기를 이용한 축소형 고공환경모사 시험)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.136-141
    • /
    • 2008
  • Cylindrical supersonic exhaust diffuser, which utilizes the momentum of high temperature gas exhausted from nozzle, provides simple methods for obtaining stable and low pressure around the propulsion system. Hot zone on which exhausted gas from nozzle exit impinges directly should be cooled to avoid melting of diffuser. This paper describes method and result of subscale high altitude simulation test with water cooling. Subscale gas generator with solid propellant was used for hot gas source and tap water for coolant.

  • PDF

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.