• Title/Summary/Keyword: 고온 수축률

Search Result 17, Processing Time 0.03 seconds

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition (60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가)

  • Yoon, Min-Ho;Choe, Gyeong-Cheol;Lee, Tae-Gyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.

Characteristic Analysis and Fabrication of Bioceramic Scaffold using Mixing Ratios of TCP/HA by Fused Deposition Modeling (압출 적층 조형 기술을 이용한 TCP/HA 의 혼합비율에 따른 바이오 세라믹 인공지지체의 제작 및 특성 연구)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1273-1281
    • /
    • 2014
  • Tissue engineering is an emerging research field that has the potential to restore, regenerate and repair damaged bone tissue and organs. Tricalcium phosphate and hydroxyapatite biomaterials-based calcium phosphate are excellent materials that have both osteoconduction and biocompatibility for bone tissue regeneration. In this study, solution structures were successfully fabricated using a fused deposition modeling system based on deposition and heating devices. The morphology characteristics of the bioceramic scaffolds sintered at a temperature of $1,300^{\circ}C$ were analyzed by scanning electron microscopy. The effects of various blended TCP/HA ratio on the microstructure and shrinkage were studied. The mechanical properties of the scaffolds were measured using a compression testing machine from stress-strain curves on the crosshead velocity of 1 mm/min. The fabricated scaffolds were evaluated by cell proliferation tests of MG-63 cells. The results of this study suggest that the blended TCP(75 wt%)/HA(25 wt%) scaffold is an appropriate scaffold for bone tissue regeneration.

Characterization of Biomass-Based Foam Structures for Home-Meal-Replacement Containers (가정간편식 용기용 바이오매스 기반 발포구조체의 특성에 관한 연구)

  • Kim, Inae;Kim, Sumin;Kambiz, Sadeghi;Han, Jeonggu;Hwang, Kiseop;Kwon, Hyukjoon;Kim, Yongsu;Yoo, Seung Ran;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2020
  • A series of foamed plastic sheets containing biomass (as HMR container) were developed via different foaming process temperatures, and their density, porosity, WVTR, and pore morphology were evaluated. Thermal stability of samples during re-heating the food in oven, change in morphology, density, porosity, and WVTR were investigated using a simulated thermal shock process according to MIL-STD-883E assay. As such, the pore size of samples was generally increased with increasing temperature of the foaming process. It can be explained that as foaming temperature increased, the viscosity of molten resins and the repulsive force against pore expansion decreased. In addition, an increase in the thermal shock cycle reduced the pore size and WVTR, while density increased because high temperature treatment that softened the sheet matrix was followed by a low temperature incubation, which contracted the matrix, thereby changing the physical and morphological properties of samples. However, an insignificant change in density was observed and WVTR tended to be decreased, indicating that as-prepared foamed plastic sheets could be used as a high thermal stable container for HMR application. Therefore, it found that the properties of newly developed HMR containers containing biomass were dependent on the foaming process temperature. Moreover, to better understanding of these newly developed containers, further investigations dealing with foaming process temperature based on various food items and cooking conditions are needed.

Evaluation of Physico-mechanical Properties and Durability of Larix kaempferi Wood Heat-treated by Superheated Steam (과열증기 열처리 낙엽송재의 물리·역학적 성능 및 내후성능 평가)

  • Park, Yonggun;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Hyunbin;Han, Yeonjung;Chang, Yoon-Seong;Kim, Kyoungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.776-784
    • /
    • 2016
  • In this study, green Larix kaempferi lumber was heat-treated by using superheated steam (SHS) at a pilot scale and then various physico-mechanical properties of the heat-treated wood were evaluated and compared with the properties of conventional hot air (HA) heat-treated wood. Decay resistance of brown rot fungi and compressive strength parallel to the grain of the SHS heat-treated wood without occurrence of drying check from green lumber were increased. On the other hand, density, equilibrium moisture content, shrinkage, and bending strength of the SHS heat-treated wood were lower than those of the conventional HA heat-treated wood. Because heat transfer and thermal hydrolysis of SHS heat treatment was accelerated by a large amount of water, the effect of SHS heat treatment on the physico-mechanical properties was higher than that of HA heat treatment at the similar conditions of temperature and time. From the results of this study, because green lumber can be heat-treated without occurrence of cracks or checks by using SHS and similar heat treatment effect on the physico-mechanical properties of wood can be produced despite a low temperature or short time of heat treatment, it is expected that heat time and energy consumption could be reduced by using SHS.

A Study on Ash Fusibility Temperature of Domestic Thermal Coal Implementing Thermo-Mechanical Analysis (TMA를 이용한 국내 발전용 탄의 용융점 변화에 대한 연구)

  • Lee, Soon-Ho;Lim, Ho;Kim, Sang Do;Jeon, Chung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.233-239
    • /
    • 2014
  • The slagging which generated from ash deposition on furnace wall and tube in boiler reduces the heat transfer efficiency and damages to safety of boiler. The slag flow behavior in boiler is affected by melting temperature which is related to ash compositions. In this study, the behavior of slag is researched by using ash fusibility test, called TMA (Thermo-Mechanical Analysis). The technique measures the percentage shrinkage as the function of temperature, T25%, T50%, T75%, T90%. These temperatures indicate different stages of melting. Then, the effect of ash chemical compositions measured from XRF (X-ray Fluorescence Spectrometer) to ash fusion temperatures is discussed. Among the chemical compositions, refractory and fluxing influence on ash fusibility is described. High levels of refractory component and limited amount of fluxing components ($Fe_2O_3$, $K_2O$, CaO) increase overall melting temperatures. High $SiO_2/Al_2O_3$ ratio decrease high melting temperatures (T75%, T90%). Meanwhile, the presence of reasonable levels of fluxing components reduces overall melting temperature. A presence of fluxing component such as $K_2O$ and CaO is found to decrease the T25% values significantly. From this research, it is possible to make a reasonable explanation and prediction of ash fusion characteristic from analysis of TMA results and ash chemical compositions.

Liquid Silicon Infiltrated SiCf/SiC Composites with Various Types of SiC Fiber (다양한 SiC 섬유를 적용한 실리콘 용융 침투 공정 SiCf/SiC 복합재료의 제조 및 특성 변화 연구)

  • Song, Jong Seob;Kim, Seyoung;Baik, Kyeong Ho;Woo, Sangkuk;Kim, Soo-hyun
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.77-83
    • /
    • 2017
  • Liquid silicon infiltration, which is one of the methods of producing fiber reinforced ceramic composites, has several advantages such as low fabrication cost and good shape formability. In order to confirm LSI process feasibility of SiC fiber, $SiC_f/SiC$ composites were fabricated using three types of SiC fibers (Tyranno SA, LoxM, Tyranno S) which have different crystallinity and oxygen content. Composites that were fabricated with LSI process were well densified by less than 2% of porosity, but showed an obvious difference in 3-point bending strength according to crystallinity and oxygen content. When composites in LSI process was exposed to a high temperature, crystallization and micro structural changes were occurred in amorphous SiOC phase in SiC fiber. Fiber shrinkage also observed during LSI process that caused from reaction in fiber and between fiber and matrix. These were confirmed with changes of process temperature by SEM, XRD and TEM analysis.

The CH3CHO Removal Characteristics of Lightweight Aggregate Concrete with TiO2 Spreaded by Low Temperature Firing using Sol-gel Method (Sol-gel법으로 이산화티탄(TiO2)을 저온소성 도포시킨 경량골재콘크리트의 아세트알데히드(CH3CHO) 제거 특성)

  • Lee, Seung Han;Yeo, In Dong;Jung, Yong Wook;Jang, Suk Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.129-136
    • /
    • 2011
  • Recently studies on functional concrete with a photocatalytic material such as $TiO_2$ have actively been carried out in order to remove air pollutants. The absorbtion of $TiO_2$ from those studies is applied by it being directly mixed into concrete or by suspension coated on the surface. When it comes to the effectiveness, the former process is less than that of the latter compared with the $TiO_2$ use. As a result, the direct coating of $TiO_2$ on materials' surface is more used for effectiveness. The Surface spread of it needs to have a more than $400^{\circ}C$ heat treat done to stimulate the activation and adhesion of photocatalysis. Heat treat consequently leads hydration products in concrete to be dehydrated and shrunk and is the cause of cracking. The study produces $TiO_2$ used Sol-gel method which enables it to be coated with a low temperature treat, applies it to pearlite using Lightweight Aggregate Concrete fixed with a low temperature treat and evaluates the spread performance of it. In addition to this, the size of pearlite is divided into two types: One is 2.5 mm to 5.0 mm and the other is more than 5.0 mm for the benefit of finding out the removal characteristics of $CH_3CHO$ whether they are affected by pearlite size, mixing method and ratio with $TiO_2$ and elapsed time. The result of this experiment shows that although $TiO_2$ produced by Sol-gel method is treated with 120 temperature, it maintains a high spread rate on the XRF(X ray Florescence) quantitative analysis which ranks $TiO_2$ 38 percent, $SiO_2$ 29 percent and CaO 18 percent. In the size of perlite from 2.5 mm to 5.0 mm, the removal characteristic of $CH_3CHO$ from a low temperature heated Lightweight concrete appears 20 percent higher when $TiO_2$ with Sol-gel method is spreaded on the 7 percent of surface. In other words, the removal rate is 94 percent compared with the 72 percent where $TiO_2$ is mixed in 10 percent surface. In more than 5.0 mm sized perlite, the removal rate of $CH_3CHO$, when $TiO_2$ is mixed with 10 percent, is 69 percent, which is similar with that of the previous case. It suggests that the size of pearlite has little effects on the removal rate of $CH_3CHO$. In terms of Elapsed time, the removal characteristic seems apparent at the early stage, where the average removal rate for the first 10 hours takes up 84 percent compared with that of 20 hours.