• Title/Summary/Keyword: 고온피로

Search Result 221, Processing Time 0.029 seconds

A Fracture Mechanic Study on Life Prediction of Surface Cracks at Elevated Temperature (고온화 표면균열의 수명예측에 관한 파괴역학적 연구)

  • Chang-Min,Suh;Young-Ho,Kim;Bung-Ho,Son;Sang-Yeub,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.100-106
    • /
    • 1990
  • Microcracking of type 304 stainless steel at $593^{\circ}C(1,100^{\circ}F)$ has been studied, in particular, initiation, growth, and coalescence of fatigue and creep microcracks on smooth specimens and small notch specimens via surface replicas and photomicrographs. Quantitative information, such as, initiation period, growth, and coalescence behavior, statistical distributions of crack length, density of cracks, distribution patterns and crack growth properties, were obtained. From this study, the fracture process, fatigue life, and creep life prediction characterized by the growth of surface microcracks have been analysed by a new approach unifying the conventional approaches based on the final fracture of materials with the fracture mechanics approach. Knowledge of these parameters is critical for the application of fracture mechanics to fatigue and creep life assessment, and the damage evaluation of structures at elevated temperature.

  • PDF

Cracking Near a Hole on a Heat- Resistant Alloy Subjected to Thermo-Mechanical Cycling (열 및 기계적 반복하중 하의 내열금속 표면 홀 주변 산화막의 변형 및 응력해석)

  • Li, Feng-Xun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1227-1233
    • /
    • 2010
  • In the hot section of a gas turbine, the turbine blades were protected from high temperature by providing a thermal barrier coating (TBC) as well as by cooling air flowing through internal passages within the blades. The cooling air then passed through discrete holes on the blade surface, creating a film of cooling air that further protects the surface from the hot mainstream flow. The holes are subjected to stresses resulting from the lateral growth of thermally grown oxide, the thermal expansion misfit between the constituent layers, and the centrifugal force due to high-speed revolution; these stresses often result in cracking. In this study, the deformation and cracks occurring near a hole on a heat-resistant alloy subjected to thermo-mechanical cycling were investigated. The experiment showed that cracks formed around the hole depending on the applied stress level and the number of cycles. These results could be explained by our analytic solution.

Fatigue Crack Growth Behavior of Powder Metallurgical Nickel-based Superalloy using DCPD Method at Elevated Temperature (DCPD법을 이용한 분말야금 니켈기 초내열합금의 고온 피로균열진전거동)

  • Na, Seonghyeon;Oh, Kwangkeun;Kim, Hongkyu;Kim, Donghoon;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.11-17
    • /
    • 2016
  • Powder metallurgy nickel based superalloy has been used in a high temperature part of turbine engine for airplane. The fatigue crack growth behavior was investigated using CT specimens for the materials at room temperature(R.T.), $600^{\circ}C$ and $700^{\circ}C$. The direct current potential drop(DCPD) method suggested by ASTM E647 was used to measure the crack length during fatigue crack growth at various stress ratios. The fatigue crack growth rate at R=0.5 was faster than that at R=0.1 for all temperature conditions and increased with the increase of stress ratio and temperature. Fractography was conducted for analysis of fracture mechanism.

고온 열천이하중을 받는 액체금속로 Y-구조물에 대한 크립효과

  • Kim, Jong-Beom;Lee, Hyeong-Yeon;Yoo, Bong;Kwak, Dae-Young;Lim, Yong-Taek
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.659-665
    • /
    • 1995
  • 액체금속로는 기존의 가압경수로와는 달리 55$0^{\circ}C$ 정도의 고온에서 운전이 되므로 고온 열응력이 중요한 문제로 대두되며 따라서 고은에서의 크립(Creep) 변형, 반복되는 기동과 정지 등으로 인한 되풀이 소성변형, 라체팅(Ratchetting), 크립과 소성의 상호작용 및 크립과 피로의 상호작용 등의 평가에 대한 기술 확립과 고온구조물에 대한 우리의 독자적인 설계방법을 개발하는 것이 필요하다 본 연구에서는 범용 유한요소해석코드인 ABAQUS의 축대칭 요소를 이용해서 액체 금속로 원자로용기와 이에 부착된 열소매(Thermal sleeve)를 Y-형태의 구조물로 모델링하여 반복되는 열천이하중에 대한 비탄성 구조해석을 수행하고 크립효과에 대한 영향을 분석하였다. 해석결과 액체금속로와 같은 고온구조물에 대하여 반복 열천이 하중과 고온 지속시간이 유발하는 크립효과가 크게 나타남을 알 수 있었다.

  • PDF

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF

High Temperature Fatigue Behavior of A356 and A319 Heat Resistant Aluminum Alloys (A356 및 A319 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.467-469
    • /
    • 2009
  • In this study, fatigue samples were prepared from cylinder head parts that are actually used in domestic (A) and foreign (B) automobiles; high-temperature, high-cycle, and low-cycle fatigue characteristics were then evaluated and compared. A study on the correlation between the microstructural factor and high temperature fatigue characteristic was attempted. The chemical compositions of the heat resistant aluminum alloys above represented A356 (A) and A319 (B), respectively. The result of the tensile strength test on material B at $250^{\circ}C$ was higher by 30.8MPa compared to material A. On the other hand, elongation was 8.5% higher for material A. At $130{\circ}C$, material B exhibited high fatigue life given high cycle fatigue under high stress, whereas material A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility is increased, material A demonstrated higher fatigue life. Through the observation of the differences in microstructure and the fatigue fracture surface, an attempt to explain the high-temperature fatigue deformation behavior of the materials was made.

  • PDF

A Study on the Fatigue Crack Grouth Charactionistic of carbon Steel in High Temperature Environment (고온환경하에서 탄소강의 피로균열진전 특성)

  • Lee, Jong-Hyung;Choi, Seong-Dae;Yang, Seong-Hyeon;Kim, Young-Moon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.399-405
    • /
    • 2004
  • Currently, the use of carbon steel in a high temperature environment, such atomic reactor, increases. Test piece was heated in electric furnace and the prescribed temperature was controlled within ${\pm}1^{\circ}C$. Debris that falls apart from cracked section due to friction is accumulated inside. Then, as it causes fretting corrosion (formation of oxide layer), it contributes to crack closure.

  • PDF

A Study on the Shot Peening on the High Temperature Fatigue Crack Propagation (쇼트피이닝 가공된 스프링강의 고온 피로균열진전 평가)

  • 박경동;정찬기;하경준
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.264-268
    • /
    • 2001
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, low temperature and high temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room, and high temperature at $25^{\circ}C,\; 50^{\circ}C, \;100^{\circ}C,\; 150^{\circ}C,\; and\; 180^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range $\DeltaK_{th}$ in the early stage of fatigue crack growth (Region I ) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF