• Title/Summary/Keyword: 고온충격

Search Result 168, Processing Time 0.031 seconds

Response of Metastatic Cancer Cells to Thermal Changes in vitro (배양온도 변화에 대한 전이성 암세포의 반응)

  • Ahn, San-Gil;Kwon, Young-Ee;Choi, Ho-Soon;Kwon, Jung-Kyun;Yoo, Jin-Young;Kim, Jong-Ryong;Kim, Won-Kyu
    • Applied Microscopy
    • /
    • v.37 no.4
    • /
    • pp.239-248
    • /
    • 2007
  • Alteration of temperature is one of cancer therapies. In general, severe hyperthermia(around $43^{\circ}C$) and hypothermia(around $18^{\circ}C$) trigger apoptosis through mitochondria, though the specific mechanism is still unknown. CC-t6 and GB-d1 cell lines, which were originally derived from human cholangiocarcinoma and gall bladder cancer, were established from a metastatic lymph node. To investigate the mechanism of metastatic cancer cell response to thermal stresses, hyperthermia($37^{\circ}C{\rightarrow}43^{\circ}C$) and hypothermia($37^{\circ}C{\rightarrow}17.4^{\circ}C$) were designed. Thermal stresses did not induce apoptosis but necrotic cell death. Any alterations of caspase-3, -9, cytochrome c, Bax, and Bcl-2 were not found in both hyperthermia and hypothermia exposed fells using western blot analysis. In the transmission electron microscopy, typical necrotic, but not apoptotic, changes were observed. These results suggest that temperature changes induce cell death through necrotic pathway in metastatic cancer in vitro, and it can be one of effective anticancer methods.

Characteristics of Elastic Wave in Fire damaged High Strength Concrete using Impact-echo Method (충격반향기법을 이용한 화해를 입은 고강도 콘크리트의 탄성파 특성)

  • Lee, Jun Cheol;Lee, Chang Joon;Kim, Wha Jung;Lee, Ji Hee
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, the damages of high strength concrete exposed to high temperature have been evaluated by the impact echo method. Elastic wave velocity and dynamic modulus of elasticity were measured by the impact echo method, and the compressive strength and the static modulus of elasticity were measured by the compression testing method after exposure to high temperature. The results showed that elastic wave velocity has a linear correlation with the compressive strength and dynamic modulus of elasticity has a linear correlation with static modulus of elasticity. Based on results, it is concluded that the impact echo method can be effectively applied to evaluate the mechanical properties of fire damaged high strength concrete.

Review of the Research and Development of Ceramic Matrix Composite Materials and Future Works (세라믹 매트릭스 복합재료 연구 개발 동향 및 전망)

  • Lee, Tae Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Ceramic matrix composites (CMCs) consist of such reinforcements as carbides, nitrides, borides and oxides, which have high melting points, low density, high modulus and high strength, for the purpose of increasing toughness. These materials are used for heat shielding systems for aerospace vehicles, high-temperature gas turbine combustion chambers, turbine blades, stator vane parts, etc. Oxide CMCs are used for the components of burner and flame holder and the high-temperature gas duct. CMCs are also applied to brake disks, which are subjected to severe thermal shock, and slide bearing parts under heavy loads. The research and development of the CMC are progressed for the strategic purpose in defense and energy industry; for instance, for aerospace applications in the U.S., and for hyper-speed aircraft, gas turbines, and atomic fissions in U.S., Japan, and Europe.

Investigation on the Effect of Laser Peening Variables on Welding Residual Stress Mitigation Using Dynamic Finite Element Analysis (동적 유한요소 해석을 통한 용접 잔류응력 이완에 미치는 레이저 피닝 변수의 영향 고찰)

  • Kim, Jong-Sung
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.84-92
    • /
    • 2010
  • 현재 가동 중인 몇몇 가압 경수로 원전 안전 1등급 설비의 이종금속 용접부는 일차수응력부식균열(PWSCC : Primary Stress Corrosion Cracking) 발생의 세가지 조건(민감 재질, 부식 환경, 인장응력)을 동시에 충족하고 있다. 즉, 이종금속 용접부는 PWSCC에 민감한 재질인 Alloy 600 계열 합금으로 제작 또는 용접되어 있으며 고온 수화학 부식 환경 하에 놓여있다. 아울러 오스테나이트 스테인리스 강의 예민화 예방을 위한 용접 후열처리 미실시로 높은 인장 용접 잔류응력이 작용하고 있다. 이러한 이종금속 용접부의 특성상 PWSCC가 발생할 잠재성이 있을 뿐만 아니라 국내외적으로 Alloy 600 계열 합금으로 제작 및 용접된 가압 경수로 원전 안전 1등급 설비의 이종금속 용접부에 실제 PWSCC가 발생된 사례들이 다수 보고되고 있다. 운전 환경 및 재질 변화 없이 PWSCC 발생을 예방하기 위해서는 인장 잔류응력을 이완시켜 낮은 인장 또는 압축 응력화하여야 한다. 이러한 인장 잔류응력 이완방법들로는 PWOL(Pre-emptive Weld Overlay), 레이저 피닝(Laser Peening), MSIP(Mechanical Stress Improvement Process), 워터 제트 피닝(Water Jet Peening), IHSI(Induction Heating Stress Improvement) 방법들이 있는데 공정 시간이 짧고 열 에너지 원이 필요 없으며 전체적인 소성 변형을 야기시키지 않는 레이저 피닝을 본 연구의 대상 방법으로 한다. 본 연구에서는 동적 유한요소 해석을 통해 용접 잔류응력을 이완시키는 레이저 피닝의 효과를 검증하고 용접 잔류응력에 미치는 레이저 피닝 변수의 영향을 고찰하고자 한다. 내부 보수용접이 수행된 경수로 원전 가압기 노즐 이종금속 용접부에 레이저 피닝을 적용한 경우에 대해 상용 유한요소 해석 프로그램인 ABAQUS를 이용하여 동적 유한요소해석을 수행한 결과, 고온 수화학 일차수와 접하는 Alloy 600 계열 합금 내면에서의 인장 잔류응력이 상당히 이완됨을 확인하였다. 또한, 최대충격 압력이 증가할수록, 충격압력 지속시간이 증가할수록, 레이저 스팟 직경이 증가할수록 내표면 인장 잔류응력 이완 정도는 감소하나 이완되는 영역의 깊이는 증가함을 알 수 있다. 또한, 레이저 피닝 방향이 잔류응력 이완에 미치는 영향은 미미함을 알 수 있다.

  • PDF

Study on the Reliability of COB Flip Chip Package using NCP (NCP 적용 COB 플립칩 패키지의 신뢰성 연구)

  • Lee, So-Jeong;Yoo, Se-Hoon;Lee, Chang-Woo;Lee, Ji-Hwan;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.25-29
    • /
    • 2009
  • High temperature high humidity and thermal shock reliability tests were performed for the board level COB(chip-on-board) flip chip packages using self-formulated and commercial NCPs(non-conductive pastes) to ensure the performance of NCP flip chip packages. It was considered that the more smaller fused silica filler in prototype NCPs is more favorable for high temperature high humidity reliability. The failure of NCP interconnection was affected by the expansion of epoxy due to moisture absorption rather than the fatigue due to thermal stress. It was considered that the NCP having more higher adhesive strength seems to be more favorable to increase the thermal shock reliability.

  • PDF

Analysis of Gene Expression in Larval Fat Body of Plutella Xylostella Under High Temperature (고온에서 배추좀나방 유충 지방체의 유전자 발현 변화 분석)

  • Kim, Kwang Ho;Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.324-332
    • /
    • 2018
  • BACKGROUND: Insects are ectothermic organisms in terrestrial ecosystems and play various roles such as controlling plant biomass and maintaining species diversity. Because insects are ectothermic, their physiological responses are very sensitive to environmental temperature which determines survival and distribution of insect population and that affects climate change. This study aimed to identification of genes contributing to fitness under high temperature. METHODS AND RESULTS: To identify genes contributing to fitness under high temperature, the transcriptomes of fat body in Plutella xyostella larva have been analyzed via next generation sequencing. From the fat body transcriptomes, structure-related proteins, heat shock proteins, antioxidant enzymes and detoxification proteins were identified. Genes encoding proteins such as structural proteins (cuticular proteins, chitin synthase and actin), stress-related protein (cytochrome P450), heat shock protein and antioxidant enzyme (catalase) were up-regulated at high temperature. In contrast expression of glutathione S transferase was down-regulated. CONCLUSION: Identifications of temperature-specific up- or down-regulated genes can be useful for detecting temperature adaptation and understanding physiological responses in insect pests.

Recycling of PC/ABS Blend Used in Instrument Panel of Automotive (자동차 Instrument Panel에 사용된 PC/ABS계의 재활용)

  • Lee, Chang Hyung;Jung, In Kwon;Lee, Yong Moo;Oak, Sung Hyun;Choi, Hyeong Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.118-123
    • /
    • 1999
  • The recycle of the polycarbonate(PC)/acrylonitrile-butadiene-styrene(ABS) separated from the instrument panel (In-Panel) of the automotive was investigated. The small amount of polyurethane(PU) foam contained in the separated PC/ABS decreased the mechanical properties of the recycled PC/ABS. However, it is found that the PU foam formed the dispered phase of small particles at high temperature ($260^{\circ}C$) under high shear of the twin extruder, whereas it formed the big particles at low extrusion temperature ($220^{\circ}C$). The mechanical properties of the recycled PC/ABS extruded at high temperature was better than those at low temperature, which enabled the recycled PC/ABS seperated from In-Panel to be applied to the radiator grille without the addition of the compatibilizers or virgin PC/ABS. This was ascribed to the smaller particle sizes of the PU foam formed at high extrusion temperature under high shear.

  • PDF

A Study On Cause Analysis and Improvement About Malfunction of Proximity Sensor Exposed High Temperature (근접센서의 고온 고장발생에 관한 원인분석 및 개선 연구)

  • Park, Jin-Saeng
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Because internal space of combat vehicle reachs about $80^{\circ}C$ at high temperature period, Proximity Sensor exposed high temperature and humidity, which has function to sense the distance and transfer signal for control unit, have enlarged sensing distance and finally locked on. Malfunction of sensing itself occur frequently, therefore we carried out cause analysis and improvement. We accomplish improvement activity secondly. Through-out many trial and error, we find out that malfunction of sensor occur at high temperature circumstance. To improve, the another Emitter Coil is added to increase voltage difference and improve sensing accuracy about 5~10 times. And we accomplish design improvement to dull temperature and humity change after increasing molding surface to add vibration and shock resistance. We prove that the improved product do not fail after enduring 136hr at $85^{\circ}C$ temperature and 85% relative humidity circumstance chamber.

Deterministic Fracture Mechanics Analysis of Nuclear Reactor Pressure Vessel Under Rot Leg Leak Accident (고온관 누설에 의한 가압열충격 사고시 원자로 용기의 건전성 평가를 위한 결정론적 파괴역학 해석)

  • Lee, Sang-Min;Choi, Jae-Boong;Kim, Young-Jin;Park, Youn-Won;Jhung, Myung-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2219-2227
    • /
    • 2002
  • In a nuclear power plant, reactor pressure vessel (RPV) is the primary pressure boundary component that must be protected against failure. The neutron irradiation on RPV in the beltline region, however, tends to cause localized damage accumulation, leading to crack initiation and propagation which raises RPV integrity issues. The objective of this paper is to estimate the integrity of RPV under hot leg leaking accident by applying the finite element analysis. In this paper, a parametric study was performed for various crack configurations based on 3-dimensional finite element models. The crack configuration, the crack orientation, the crack aspect ratio and the clad thickness were considered in the parametric study. The effect of these parameters on the maximum allowable nil-ductility transition reference temperature ($(RT_{NDT})$) was investigated on the basis of finite element analyses.

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.