• Title/Summary/Keyword: 고속 탐색

Search Result 472, Processing Time 0.025 seconds

Motion Estimation in Video Coding using Search Candidate Point on Region by Binary-Tree Structure (이진트리 구조에 따른 구간별 탐색 후보점을 이용한 비디오 코딩의 움직임 추정)

  • Kwak, Sung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.402-410
    • /
    • 2013
  • In this paper, we propose a new fast block matching algorithm for block matching using the temporal and spatially correlation of the video sequence and local statistics of neighboring motion vectors. Since the temporal correlation of the video sequence between the motion vector of current block and the motion vector of previous block. The proposed algorithm determines the location of a better starting point for the search of an exact motion vector using the point of the smallest SAD(sum of absolute difference) value by the predicted motion vectors of neighboring blocks around the same block of the previous frame and the current frame and the predictor candidate point on each division region by binary-tree structure. Experimental results show that the proposed algorithm has the capability to dramatically reduce the search points and computing cost for motion estimation, comparing to fast FS(full search) motion estimation and other fast motion estimation.

A Prediction Search Algorithm by using Temporal and Spatial Motion Information from the Previous Frame (이전 프레임의 시공간 모션 정보에 의한 예측 탐색 알고리즘)

  • Kwak, Sung-Keun;Wee, Young-Cheul;Kimn, Ha-Jine
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of the previous block. If we can obtain useful and enough information from the motion vector of the same coordinate block of the previous frame, the total number of search points used to find the motion vector of the current block may be reduced significantly. In this paper, we propose the block-matching motion estimation using an adaptive initial search point by the predicted motion information from the same block of the previous frame. And the first search point of the proposed algorithm is moved an initial point on the location of being possibility and the searching process after moving the first search point is processed according to the fast search pattern. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved UP to the 1.05dB as depend on the image sequences and improved about 0.33~0.37dB on an average. Search times are reduced about 29~97% than the other fast search algorithms. Simulation results also show that the performance of the proposed scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS(Full Search) algorithm.

  • PDF

Efficient Exploring Multiple Execution Path for Dynamic Malware Analysis (악성코드 동적 분석을 위한 효율적인 다중실행경로 탐색방법)

  • Hwang, Ho;Moon, Daesung;Kim, Ikkun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.377-386
    • /
    • 2016
  • As the number of malware has been increased, it is necessary to analyze malware rapidly against cyber attack. Additionally, Dynamic malware analysis has been widely studied to overcome the limitation of static analysis such as packing and obfuscation, but still has a problem of exploring multiple execution path. Previous works for exploring multiple execution path have several problems that it requires much time to analyze and resource for preparing analysis environment. In this paper, we proposed efficient exploring approach for multiple execution path in a single analysis environment by pipelining processes and showed the improvement of speed by 29% in 2-core and 70% in 4-core through experiment.

A Fast Moving Object Tracking Method by the Combination of Covariance Matrix and Kalman Filter Algorithm (공분산 행렬과 칼만 필터를 결합한 고속 이동 물체 추적 방법)

  • Lee, Geum-boon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1477-1484
    • /
    • 2015
  • This paper proposes a robust method for object tracking based on Kalman filters algorithm and covariance matrix. As a feature of the object to be tracked, covariance matrix ensures the continuity of the moving target tracking in the image frames because the covariance is addressed spatial and statistical properties as well as the correlation properties of the features, despite the changes of the form and shape of the target. However, if object moves faster than operation time, real time tracking is difficult. In order to solve the problem, Kalman filters are used to estimate the area of the moving object and covariance matrices as a feature vector are compared with candidate regions within the estimated Kalman window. The results show that the tracking rate of 96.3% achieved using the proposed method.

A Fast Inter Prediction Encoding Technique for Real-time Compression of H.264/AVC (H.264/AVC의 실시간 압축을 위한 고속 인터 예측 부호화 기술)

  • Kim, Young-Hyun;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1077-1084
    • /
    • 2006
  • This paper proposed a fast algorithm to reduce the amount of calculation for inter prediction which takes a great deal of the operational time in H.264/AVC. This algorithm decides a search range according to the direction of predicted motion vector, and then performs an adaptive spiral search for the candidates with JM(Joint Model) FME(Fast Motion Estimation) which employs the rate-distortion optimization(RDO) method. Simultaneously, it decides a threshold cost value for each of the variable block sizes and performs the motion estimation for the variable search ranges with the threshold. These activities reduce the great amount of the complexity in inter prediction encoding. Experimental results by applying the proposed method .to various video sequences showed that the process time was decreased up to 80% comparing to the previous prediction methods. The degradation of video quality was only from 0.05dB to 0.19dB and the compression ratio decreased as small as 0.58% in average. Therefore, we are sure that the proposed method is an efficient method for the fast inter prediction.

Fast motion estimation scheme based on Successive Elimination Algorithm for applying to H.264 (H.264에 적용을 위한 SEA기반 고속 움직임 탐색 기법)

  • Lim Chan;Kim Young-Moon;Lee Jae-Eun;Kang Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.151-160
    • /
    • 2005
  • In this paper, we propose a new fast motion estimation algorithm based on successive elimination algorithm (SEA) which can dramatically reduce heavy complexity of the variable block size motion estimation in H.264 encoder. The proposed method applies the conventional SEA in the hierarchical manner to the seven block modes. That is, the proposed algorithm can remove the unnecessary computation of SAD by means of the process that the previous minimum SAD is compared to a current SAD for each mode which is obtained by accumulating sum norms or SAD of $4\times4$ blocks. As a result, we have tighter bound in the inequality between SAD and sum norm than in the ordinary SEA. If the basic size of the block is smaller than $4\times4$, the bound will become tighter but it also causes to increase computational complexity, specifically addition operations for sum norm. Compared with fast full search algorithm of JM of H.264, our algorithm saves 60 to $70\%$ of computation on average for several image sequences.

The Development of HILS and Test Equipment for Millimeter-Wave (Ka-Band) Seeker's Test and Evaluation (밀리미터파 탐색기 시험 평가를 위한 HILS 및 시험 장비 개발)

  • Song, Sung-Chan;Na, Young-Jin;Yoon, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • This paper describes the developed HILS and test equipment in order to test the performances of MMW(Millimeter-Wave) seeker which can detect and track a high speed of short-range ballistic missile and aircraft. This system is used to 141 horn antenna array, array switching, and gain and phase control algorithm to simulate various kind of targets and trajectory of high speed and maneuver moving target. In addition, it simulates not only velocity and range for these targets but also clutter and jamming environments. System configuration and implementation and the measurement results of major subsystems such as target motion simulator, simulation signal generator, high speed data aquisition unit, and central control unit are presented. These systems could verify the detection and tracking performance of MMW seeker through dynamic real-time test based on simulation flight scenario.

A Fast Cell Search Algorithm using Code Position Modulation within code block in Asynchronous W-CDMA System (비동기 W-CDMA 시스템을 위한 코드블럭 내의 코드위치변조를 이용한 고속 셀 탐색 알고리즘)

  • 최정현;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.611-617
    • /
    • 2000
  • Asynchronous mode W-CDMA system is kmown to be quite appropriate to the next generation mobile communication system, especially in a non-homogenious cellular architecture. In this case, however, each base station needs to use different spreading code for identification, so it is a demeanding task for a mobile terminal to find the best cell site and get an accurate code synchronization at the beginning of a communication. Since slow acquisition of a base station could mean the failure of initiation, a fast algorithm to accelerate the cell search process is essential. In this paper, a new cell search algorithm based on the binary code position modulation within the code block is proposed. Different cell sites are identified by different hopping code sequences, andeach position modulation is performed by the hopping code. The proposed algorithm is proved to make the cell search time in most places in a cell much shorter than the previous algorithms, and to make the receiver implementation simpler.

  • PDF

Real-Time Landmark Detection using Fast Fourier Transform in Surveillance (서베일런스에서 고속 푸리에 변환을 이용한 실시간 특징점 검출)

  • Kang, Sung-Kwan;Park, Yang-Jae;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.7
    • /
    • pp.123-128
    • /
    • 2012
  • In this paper, we propose a landmark-detection system of object for more accurate object recognition. The landmark-detection system of object becomes divided into a learning stage and a detection stage. A learning stage is created an interest-region model to set up a search region of each landmark as pre-information necessary for a detection stage and is created a detector by each landmark to detect a landmark in a search region. A detection stage sets up a search region of each landmark in an input image with an interest-region model created in the learning stage. The proposed system uses Fast Fourier Transform to detect landmark, because the landmark-detection is fast. In addition, the system fails to track objects less likely. After we developed the proposed method was applied to environment video. As a result, the system that you want to track objects moving at an irregular rate, even if it was found that stable tracking. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

Development of High-Speed Real-Time Signal Processing for 3D Surveillance Radar (3차원 탐색 레이더용 고속 실시간 신호처리기 개발)

  • Bae, Jun-Woo;Kim, Bong-Jae;Choi, Jae-Hung;Jeong, Lae-Hyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.737-747
    • /
    • 2013
  • A 3-D surveillance radar is a pulsed-doppler radar to provide various target information, such as range, doppler and angle by performing TWS. This paper introduces HW/SW architecture of radar signal processing board to process in real-time using high-speed multiple DSP(Digital Signal Processor) based on COTS. Moreover, we introduced a implemented algorithm consisted of clutter map creation/renewal, FIR(Finite Impulse Response) filter for rejection of zero velocity components, doppler filter, hybrid CFAR and finally presented computational burden of each algorithm by performing operational test using a beacon.