• Title/Summary/Keyword: 고속공작기계

Search Result 230, Processing Time 0.024 seconds

Analysis of Dynamic Behavior and Balancing of High Speed Spindle (고속 스핀들의 동적거동과 밸런싱 해석)

  • Koo, Ja-Ham;Kwon, Soon-Goo;Kim, Jong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.238-244
    • /
    • 2017
  • A spindle with a built-in motor can be used to simplify the structure of a machine tool system, but the rotor inevitably has unbalanced mass. This paper presents an analysis of the dynamic behavior. The spindle was used in a CNC lathe and investigated using the finite element method and transfer matrices. The high-speed spindle can be very sensitive to the rotation of an unbalanced mass, which has a harmful effect on many machine tools. Thus, a balancing procedure was performed with a spindle-bearing system for the CNC lathe by numerical analysis. The balancing was performed through the influence coefficient method, and the whirl orbit radii before and after balancing were compared to evaluate the effects. The results show that the rotational speed of the spindle seriously affects the whirl responses of the spindle. The whirl responses were also affected by other factors, such as the unbalanced mass and bearing stiffness. The balancing of the assembled spindle model significantly reduced the whirl orbit magnitude.

A Study on the Mechanical Properties as a Result of Friction Welding With SKH55 and SM45C (고속도강(SKH55)과 기계구조용 탄소강(SM45C)의 마찰용접특성에 관한 연구)

  • Choi, Su-Hyun;Min, Byung-Hoon;Kim, Noh-Kyung;Lim, Hyung-Taek;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2008
  • This study deals with the friction welding of SKH55 and SM45C; The friction time was variable conditions under the conditions of spindle revolution 2,000rpm, friction pressure of 190MPa, upset pressure of 270MPa and upset time of 2.0 seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, and so the results were as follows. 1. When the friction time is 1.0 seconds, the tensile strength of friction welds was 926MPa, which is around as much as 84% of the tensile strength of base metal(SKH55), the bending strength of friction welds was 1,542MPa, which is around as much as 80% of the bending strength of base metal(SKH55), the shear strength of friction welds was 519MPa, which is around as much as 70% of the shear strength of base metal(SKH55). 2 According to the hardness test, the hardness distribution of the weld interface was formed from 964Hv to 254Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 1.5mm of SKH55 and 2mm of SM45C.

Machinability evaluation according to variation of tool shape in high speed machining (고속가공용 엔드밀공구의 형상변화에 의한 성능평가)

  • 강명창;김정석;이득우;김광호;하동근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.393-398
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining in not close behind that of machine tool. In this study, several types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge, rake angle and relief angle. Machinability is measured by cutting force, tool life, tool wear, chip shape and surface roughness according to cutting length. 3-axis cutting forces are acquired from the invented tool dynamometer for high speed machining. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. By above results, it is suggested the endmill tool with $45^{\circ}$ helix angle, 6 cutting edge, $-15^{\circ}$ rake angle and $12^{\circ}$ relief angle be suitable for high speed machining

  • PDF

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function (가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계)

  • 최영휴;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

A Cylindrical Spindle Displacement Sensor and its Application on High Speed Milling Machine (원통형 주축 변위 센서를 이용한 고속 밀링 가공 상태 감시)

  • Kim, Il-Hae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.108-114
    • /
    • 2007
  • A new cutting force estimating approach and machining state monitoring examples are presented which uses a cylindrical displacement sensor built into the spindle. To identify the tool-spindle system dynamics with frequency up to 2 kHz, a home-built electro-magnetic exciter is used. The result is used to build an algorithm to extract the dynamic cutting force signal from the spindle error motion; because the built-in spindle sensor signal contains both spindle-tool dynamics and tool-workpiece interactions. This sensor is very sensitive and can measure broadband signal without affecting the system dynamics. The main characteristic is that it is designed so that the measurement is irrelevant to the geometric errors by covering the entire circumferential area between the target and sensor. It is also very simple to be installed. Usually the spindle front cover part is copied and replaced with a new one with this sensor added. It gives valuable information about the operating condition of the spindle at any time. It can be used to monitor cutting force and chatter vibration, to predict roughness and to compensate the form error by overriding spindle speed or feed rate. This approach is particularly useful in monitoring a high speed machining process.

The Implement of a high Speed Machining Software by Look-ahead Algorithm (선독 알고리즘에 의한 고속 가공 소프트웨어 구현)

  • 이철수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.252-257
    • /
    • 2000
  • This paper describes a look-ahead algorithm of PCNC(personal computer numerical control). The algorithm is based on acceleration/deceleration before interpolation never including a command error and determines a velocity value in end point of each block(or start point of each block). The algorithm is represented as following; 1) calculating two maximum arrival velocity(v1, v2) by a acceleration value, a command velocity and distance in a previous block and a next block, 2) getting a tangent velocity(v3) of the adjacent blocks, 3) choosing a minimum value among these three velocities, and 4) setting the value to a velocity of a start point of the next block(or a end point of the previous block). The proposed look-ahead algorithm was implemented and tested by using a commercial RTOS(real time operation system) on the MS-Windows NT 4.0 in a PC platform. For interfacing to a machine, a counter board, a DAC board and a DIO board were used. The result of the algorithm increased a machining precision and a machining speed in many short blocks.

  • PDF

A Study on the High-Speed Machining of Thin-wall Part (고속가공에서 박막 측벽(Thin wall) 파트 가공을 위한 연구)

  • 김흥배;이우영;최성주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.343-348
    • /
    • 2000
  • The term‘High Speed Machining’has been used for many years to describe end milling with small diameter tools at high rotational speeds. typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent years, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end-mill is an important tool in the milling process. A typical examples for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameters for end milling is one of the important factors affecting the cutting cost. The one of the advantages of HSM is cutting thin-wall part of light alloy like Al (thinkness about 0.3mm). In this paper, firstly, we study characteristics of HSM, and then, we choose the optimal parameters(cutting forces) and investigate various machining strategies to cut thin-wall part by experiment.

  • PDF

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts (항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계)

  • Yun, Taewook;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

A Study on the Structural Analysis of the Spindle of Swiss Turn Type Lathe for Ultra Precision Convergence Machining (초정밀 융합가공을 위한 주축이동식 자동선반의 구조해석에 관한 연구)

  • Park, Myung-Kyu;Lee, Bong-Gu
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.145-150
    • /
    • 2018
  • In the machine tool spindle, various tasks ranging from roughing to finishing must be possible, and the functions of constant speed movement or rotation positioning must be performed. Therefore, there are many variables to be considered in the spindle design. The Swiss Turn Type spindle automatic lathe is a good machine tool for working pins with thinner shafts than a fixed automatic lathe. The Swiss Turn Type spindle is mainly used for precision machining of small products, so the machining precision should be high. The maximum outer diameter limit shall be Ø32 and the inner diameter limit shall be Ø6. In this study, the static and dynamic characteristics of the SCM440 material used in the spindle type automatic lathe were analyzed by applying it to the Swiss turn type spindle automatic lathe. Numerical analysis was used to obtain optimal design technique with high speed and high accuracy considering the factors affecting the static and dynamic characteristics of the spindle.