Browse > Article
http://dx.doi.org/10.15207/JKCS.2018.9.5.145

A Study on the Structural Analysis of the Spindle of Swiss Turn Type Lathe for Ultra Precision Convergence Machining  

Park, Myung-Kyu (Division of Mechanical Engineering Technology, Yeungnam University College)
Lee, Bong-Gu (Division of Mechanical Engineering Technology, Yeungnam University College)
Publication Information
Journal of the Korea Convergence Society / v.9, no.5, 2018 , pp. 145-150 More about this Journal
Abstract
In the machine tool spindle, various tasks ranging from roughing to finishing must be possible, and the functions of constant speed movement or rotation positioning must be performed. Therefore, there are many variables to be considered in the spindle design. The Swiss Turn Type spindle automatic lathe is a good machine tool for working pins with thinner shafts than a fixed automatic lathe. The Swiss Turn Type spindle is mainly used for precision machining of small products, so the machining precision should be high. The maximum outer diameter limit shall be Ø32 and the inner diameter limit shall be Ø6. In this study, the static and dynamic characteristics of the SCM440 material used in the spindle type automatic lathe were analyzed by applying it to the Swiss turn type spindle automatic lathe. Numerical analysis was used to obtain optimal design technique with high speed and high accuracy considering the factors affecting the static and dynamic characteristics of the spindle.
Keywords
Ultra Precision Convergence Machining; Finite Element Method; Machine Tool; Main Spindle Design; Structural Analysis; Bearing Life;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 N. S. Oh, D. H. Kim & C. M. Lee. (2015). A Study on the Analysis of 20,000rpm Heavy-Cutting Spindle for Precision Machining, Journal of Korea Society for Precision Engineering, 32(1), 57-61.   DOI
2 M. J. Kim, C. M. Lee, J. H. Lee & G. B. Kim. (2014). The Measurement Method of a Vibration for Main Spindle of Machine Tool, Journal of Korea Society for Precision Engineering, 464.
3 J. W. Choi. (2015). Guidelines for Optimal Bearing Locations for High Dynamic Stiffness of a Machine Tool Spindle, Korean Society of Mechanical Technology, 17(5), 935-940.   DOI
4 T. J. Ko, H. S. Kim, H. S. Kim & S. H. Kim. (2001). Research on the Experiment Methods for the Compensation of Thermal Distortion of Machine Tool Spindle, Journal of Korea Society for Precision Engineering, 375-379.
5 C. H. Lee. (2002). Thermal Deformation Characteristics and Compensation of High Speed Spindle Unit, Journal of Korea Society for Precision Engineering, 19(5) 7-12.
6 I. J. Yoon, H. S. Kim, T. J. Ko & H. S. Kim. (2004). A Study on the Thermal Experiment for the Compensation of Thermal Deformation in Machine Tools, Journal of the Korean Society of Machine Tool Engineers, 13(1), 1-8.
7 I. J. Yoon, H. S. Ryu, T. J. Ko & H. S. Kim. (2004). A Study on the Exprimental Compensation of Thermal Deformation in Machine Tools, Journal of the Korean Society of Machine Tool Engineers, 13(3), 16-23.
8 D. S. Son & J. H. Kook. (2017). A Study on Thermal Deformation of Spindle Unit at Machine Tool, Journal of the Korean Society of Manufacturing Process Engineers, 140.
9 T. H. Lee. (2014). A Study on the Failure and Life Assessment of High Speed Spindle, Journal of Korea Society for Precision Engineering, 31(1), 67-73.   DOI
10 E. G. Yoh, Y. R. Kim. K. K. Han, M. W. Park, Y. S. Lee & H. I. Yoo. (1998). A study on The Effects of the Bearing Parameters on the Main Spindle Design of Machine Tool, Journal of the Korean Society of Machine Tool Engineers, 7(1), 119-125.
11 B. S. Kim, & J. K. Kim. (2001). A Study on the Static Stiffness in the Main Spindle Taper of Machine Tool, Transactions of the Korean society of machine tool engineers, 10(6), 15-20.
12 S. I. Kim, H. S. Lee & B. M. Kwak. (1991). Multiobjective Optimal Design of a Machine-Tool Spindle System, Journal of the Korean Society of Mechanical Engineers, 15(4), 1150-1159.
13 S. C. Lee, J. H. Hwang & C. H. Park. (2016). Kinematic Analysis for Calculating Loop Stiffness of Machine Tool, Journal of the Korean Society of Manufacturing Technology Engineers, 134.
14 O. Maeda, Y. Cao & Y. Altinatas. (2005). Expert Spindle Design System, International Journal of Machine Tools & Manufacture, 45(4), 537-548,   DOI
15 C.-W. Lin & J. F. Tu. (2007). Model-based Design of Motorized Spindle Systems to Improve Dynamic Performance at High Speeds, Journal of Manufacturing Processes, 9(2), 94-108.   DOI
16 E. Abele, Y. Altintas & C. Brecher, (2010). Machine Tool Spindle Units, CIRP Annals Manufacturing Technology, 59(2) 781-802.   DOI