• Title/Summary/Keyword: 고분자 전해질형 연료전지

Search Result 52, Processing Time 0.025 seconds

A Study on the Ion Permeability Characteristics in Nano-Polymer Membrane Structures (나노고분자막 구조의 이온투과 특성에 관한 연구)

  • Kim, Yoo-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.133-137
    • /
    • 2006
  • Ion permeability characteristics in nano-polymer membrane structures are performed to investigate the chemical composition and characteristics of MEA(Membrane Electrolyte Assembly) which is one of the most important parts to decide the performance in PEMFC(Polymer Electrolyte Membrane Fuel Cell) system. Subsequently, the MEA manufacturing process is presented for the uniformed MEA product. In the meantime, the analysis of SEM(Scanning Electron Microscope) is carried out in order to investigate the joint aspect and chemical composition of MEA. As a result of SEM analysis, it is found that the bonded catalyst and carbon composition contain the reasonable amount to get unit cell output. It is also found that the humidification gives the better performance result slightly.

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

Experimental Study on the Characteristics of Heat Exchanger of 1 kW PEMFC System for UAV (무인항공기용 고분자전해질형 연료전지 시스템의 열교환기 성능 특성 연구)

  • Kang, Sang-Gyu;Kim, Byung-Jun;Kim, Han-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.819-826
    • /
    • 2011
  • The proton exchange membrane fuel cell (PEMFC) is regarded as the most promising alternative power sources for unmanned aerial vehicle (UAV) due to its high energy density and silent operation. Since there are many load changes during UAV flight, thermal management is one of the important factor for the performance of PEMFC. In order to reduce the UAV weight for the stable operation of UAV, thermal management system (TMS) studied in this work does not use the fan but use the air flowing into UAV by UAV flight. In order to develop the passive type heat exchanger (HEX) for 1kW PEMFC, four types of HEXs are fabricated and their cooling performances are compared. The parametric study on the cooling performance of HEXs has performed with the variation of operating parameters such as mass flow rates and inlet temperature of air and coolant. Type 4 has the best performance in every case. This study can be helpful to achieve the optimal design of HEX for PEMFC powered UAV.

Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs) (고분자전해질형 연료전지의 단순 채널 리브 형상에서의 물방울 가시화 연구)

  • Choi, Min Wook;Kim, Han-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.386-392
    • /
    • 2014
  • The effective water management in a polymer electrolyte membrane fuel cell (PEMFC) is one of the key strategies for improving cell performance and durability. In this work, an ex situ measurement was carried out to understand the water droplet behavior on the surface of gas diffusion layer (GDL) as a fundamental study for establishing novel water management. For that purpose, simplified cell including one rib and two flow channels was designed and fabricated. Using this ex situ device, the water droplet emergence through the GDL of the PEMFC was emulated to understand liquid water transport through the porous diffusion medium. Through the visualization experiment, the emergence and growth of water droplets at the channel/GDL interface are mainly observed with the surface characteristics of GDL (SGL 10BA, 24BA) and rib when the liquid water passes through the GDL and is expelled to the flow channel. It is expected that the results obtained from this study can contribute to the better understanding on the water droplet behavior (emergence and removal) in the flow channels of PEMFC.

A Basic Experimental Study on Performance of Proton Exchange Membrane Fuel Cell System for Vehicle (PEM 연료전지 자동차 적용을 위한 성능실험에 관한 기초연구)

  • Lee, Hyun-kun;Oh, Byeong-soo;Jeong, Kwiseong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.3
    • /
    • pp.137-147
    • /
    • 2000
  • Not only study of fuel cell performance but study of fuel cell application is very important, therefore these studies were paralleled together for the commercialization of exciting power generation. The objective of this study is to determine the characteristics of shaft power and efficiency as a function of rpm and to compare natural convection air method to forced air method. From these results, performance of forced air was better than that of natural convection air because it enables to improve mass transportation by increasing air flow rate. With decreasing shaft power, efficiency of fuel cell decreases remarkably because dc motor drives at the low range of efficiency. Fuel cell powered vehicle has to be driven considering efficiency and shaft power. It should be driven at 35-45% of efficiency and 0.55-0.75v/cell.

  • PDF

Character Analysis of 1.2kW Proton Exchange Membrane Fuel cell (1.2KW 고분자 전해질형 연료전지 특성 분석)

  • Kim, Sung-Jun;Choi, Kyung-Tae;Choi, Kwang-Ju;Sugimura, Hisayuki;Lee, Hyun-Woo;Baek, Soo-Hyun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.288-291
    • /
    • 2005
  • This paper is aimed at presenting a proton exchange membrane (PEM) fuel cell stack. The fuel cell electrical output voltage and current (V-I) characteristic is described for the first time by a simplified closed form suitable. The characteristics obtained from the simulation are compared with the experimental results on a Ballard commercial fuel cell stack as well as to the manufacturer given data.

  • PDF

A Study on the I-V and I-P Characteristics for Optimized Operation of PEMFC (고분자 전해질형 연료전지의 최적운전을 위한 전압-전류, 전류-전력 특성 연구)

  • Jung, You-Ra;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.112-116
    • /
    • 2010
  • Fuel cell as a renewable energy source is clean and has a lot of advantages. The source can solve energy crisis and environmental problems such as greenhouse effect, air pollution and the ozone layer destruction. This paper introduces hybrid system(hydro-Genius Professional, heliocentris) of solar cell and fuel cell. Also, this paper shows the I-P, V-I characteristics of fuel cells which are connected in parallel and series. From these results, we also found the maximum power was transferred at 0.5[${\Omega}$]. The terminal voltage was also decreased according to the current because of the internal resistance. The power transfer in series was two times than that in parallel.

Character Analysis of 1.2kW Proton Exchange Membrane Fuel cell (1.2kW 고분자 전해질형 연료전지 특성 분석)

  • Kim, Sung-Jun;Choi, Kwang-Ju;Kwon, Soon-Kurl;Suh, Ki-Young;Nakaoka, M.;Lee, Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.781-784
    • /
    • 2005
  • This paper is aimed at presenting a proton exchange membrane ( PEM ) fuel cell stack. The fuel cell electrical output voltage and current (V-I) characteristic is described for the first time by a simplified closed form suitable. The characteristics obtained from the simulation are compared with the experimental results on a Ballard commercial fuel cell stack as well as to the manufacturer given data.

  • PDF

Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell (연료전지 분리판의 형상설계를 위한 유동해석)

  • Park, Jeong-Seon;Jeong, Hye-Mi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1201-1208
    • /
    • 2002
  • A numerical flow-field analysis is performed to investigate flow configurations in the anode, cathode and cooling channels on the bipolar plates of a proton exchange membrane fuel cell (PEMFC). Continuous open-faced flow channels are formed on the bipolar plate surface to supply hydrogen, air and water. In this analysis, two types of channel pattern are considered: serpentine and spiral. The averaged pressure distribution and velocity profiles of the hydrogen, air and water channels are calculated by two-dimensional flow-field analysis. The equations for the conservation of mass and momentum in the two-dimensional fluid flow analysis are slightly modified to include the characteristics of the PEMFC. The analysis results indicate that the serpentine flow-fields are locally unstable (because two channels are cross at right angles). The spiral flow-fields has more stable than the serpentine, due to rotational fluid-flow inertia forces. From this study, the spiral channel pattern is suggested for a channel pattern of the bipolar plate of the PEMFC to obtain better performance.

Control Model of 1 kW Class Tactical Hybrid Power Generation System with Liquid Fuel Processor (야전용 액체 연료개질 1 kW급 하이브리드 전원시스템 제어 연구)

  • Ji, Hyun-Jin;Ha, Sang-Hyun;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.732-739
    • /
    • 2011
  • A fuel cell/secondary battery hybrid power generation system could extend well beyond the efficiency and interoperability of the conventional diesel generator. The suggested power source system consists of 2.3 kW class PEMFC, 100 Ah lithium polymer battery, and two DC/DC converters by serial connection type. It was known that interoperability of sub-systems is the key factor for stable and optimal control of the hybrid power generation system. The modeling and simulation methods have been proposed to reduce the number of configurations and performance tests for components selection and select the optimized control condition of the power generation system. The control model for power source system is implemented based on the empirical formulation and carried out in the Matlab/Simulink environment. The results show that the simulation can be used to establish the algorism of prototype and increase the durability of the power source system.