• Title/Summary/Keyword: 고분자 액츄에이터

Search Result 9, Processing Time 0.026 seconds

Mechanical Properties of Conductive Polymer as Actuator Materials with Change of Polymerization Condition (합성조건의 변화에 따른 액츄에이터 재료로서의 전도성 고분자의 기계적 특성)

  • Choi, Young;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.446-451
    • /
    • 1998
  • Recently, conductive polymer is known to be direct-drive active material which can convert electrical energy directly into mechanical energy. In this paper, the polymerized thickness of polypyrrole is measured with change of polymerization conditions and the mechanical bending is analyzed for various polymerized thickness. In order to detect of mechanical bending, bending beam method using the bridge shaped sample is used. Thickness of polypyrrole is proportional to polymerization time in fixed current density. Also it shows a linear relation with the applied current except high current density. Maximum displacement appears at the thickness of $18.35{\mu}m$ which has been polymerized at $5.4{\mu}A/mm^2$ and for 120min and actuated at the frequency of 0.1Hz.

  • PDF

Tailored biomimetic actuators made with multiwalled carbon nanotube loaded ionomeric nanocomposites (생체모방 액츄에이터용 다중탄소나노튜브/고분자 나노복합체)

  • Lee, Se-Jong;Lee, Deuk-Yong;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • Biomimetic actuators that can produce soft-actuation but large force capability are of interest. Nafion, an effective ionomeric material from DuPont, has been shown to produce large deformation under low electric fields (<10V/mm). Carbon nanotube/polymer nanocomposites were cast to enhance the electromechanical properties of the composites. Multiwalled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by a solution casting to investigate the effect of M-CNT loading in the range of 0 to 7 wt% on electromechanical properties of the M-CNT/Nafion nanocomposites. The measured elastic modulus and actuation force of the M-CNT/Nafion nanocomposites are drastically different, showing larger elastic modulus and improved electromechanical coupling, from the one without M-CNT.

Pyrolysis Behavior of Acrylic Binder/Piezoelectric Ceramic System for Multilayer Actuator (적층 액츄에이터용 아크릴릭계 바인더/압전 세라믹계의 열분해 거동)

  • Park, Soung-Uy;Lee, Jeon-Kook;Jung, Hyung-Jin
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.231-238
    • /
    • 1993
  • The thermal behavior of binder in multi-layer actuator has an effect on the properties of actuator. Binder burn-out process and thermal degradation mechanism of PNN-PZT/Acrylic binder were analyzed by FTIR, DSC, TGA. Binder was burnt out by two step. In oxygen atomsphere, thermal degradation was activated and final residue was minimized to 5%.

  • PDF

Development and Performance Evaluation of Polymer Micro-actuator using Segmented Polyurethane and Polymer Composite Electrode (세그먼트화 폴리우레탄을 이용한 고분자 마이크로 액츄에이터의 제작 및 고분자 전극의 상태에 따른 구동성능)

  • Jung Young Dae;Park Han Soo;Jo Nam Ju;Jeong Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.180-187
    • /
    • 2005
  • This paper is focused on the development of the flexible electrode for disc-type polymer actuators using Segmented Polyurethane(SPU). This paper consists of two parts. The one is about the mechanical property such as elastic modulus. these parameters mainly affect behaviors of polymer actuators and the other is about the electro-chemical property such as the surface resistance of the composite electrode affects the strength of electrostatic force, results in the deformation of polymer actuators. The Young's modulus was measured by UTM. As result, by increasing the modulus of a body of polymer actuators, the maximum displacement of polymer actuators are decreased. The surface resistance of the electrode was measured by 4 point probe system. Compared with the conductive silver grease, the displacement of polymer actuators using carbon black(CB) composite electrodes is comparably small but CB composite electrode should be the practical approach for the improvement of the performance of all-solid actuators, compared with another types of electrode materials.

Bending Actuator Using Conducting Polymer (전도성 고분자를 이용한 BENDING 액츄에이터)

  • Na, Seung-Woo;Kim, Myung-Soon;Lee, Seung-Ki;Lee, Sang-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1997-2000
    • /
    • 1996
  • A strip-type bending actuator using perfluoro sulfonic acid film ($Nafion^{(R)}$ 117, Du Pont), which is a kind of conducting polymer, fabricated and characterized. Conducting polymer is a useful material as an actuator due to the simple structure, fabrication method and low driving voltage. Experimental results show that the fabricated bending actuator has about ${\pm}10^{\circ}$ of bending angle at 4 V and fast response, which means that the conducting polymer can be used practically as actuator material.

  • PDF

Photo-responsive Smart Polymer Materials (광 응답형 스마트 고분자 소재)

  • Yu, Jong-Su;Lee, Seong-Yun;Na, Hee-Yeong;Ahn, Tae-Jung;Kim, Hyun-Kyoung
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.282-291
    • /
    • 2012
  • Control of shape/volume, mechanical, optical, electrical, and chemical switching of materials by external stimuli such as light, temperature, pH, electric field, and pressure has attracted great attention. Among these materials, photo-responsive materials containing photochromic compounds such as azobenzene, spiropyran, and cinnamic acid groups have been the subject of intense interest in recent years. In this review, we describe the recent progress in the area of azobenzene containing polymer materials that can convert light energy into mechanical energy directly. Especially we focus our attention on light-driven actuators such as artificial muscle, motor, and valve. We summarize the photomechanical effects in liquid crystal elastomer, amorphous polymer, monolayer, and supramolecules containing azobenzene, respectively.