DOI QR코드

DOI QR Code

Photo-responsive Smart Polymer Materials

광 응답형 스마트 고분자 소재

  • Yu, Jong-Su (Department of Polymer Science and Engineering, Chosun University) ;
  • Lee, Seong-Yun (Department of Polymer Science and Engineering, Chosun University) ;
  • Na, Hee-Yeong (Department of Polymer Science and Engineering, Chosun University) ;
  • Ahn, Tae-Jung (Department of Photonic Engineering, Chosun University) ;
  • Kim, Hyun-Kyoung (Department of Polymer Science and Engineering, Chosun University)
  • 유종수 (조선대학교 응용화학소재공학과) ;
  • 이성윤 (조선대학교 응용화학소재공학과) ;
  • 나희영 (조선대학교 응용화학소재공학과) ;
  • 안태정 (조선대학교 광기술공학과) ;
  • 김현경 (조선대학교 응용화학소재공학과)
  • Received : 2012.10.23
  • Accepted : 2012.11.12
  • Published : 2012.12.31

Abstract

Control of shape/volume, mechanical, optical, electrical, and chemical switching of materials by external stimuli such as light, temperature, pH, electric field, and pressure has attracted great attention. Among these materials, photo-responsive materials containing photochromic compounds such as azobenzene, spiropyran, and cinnamic acid groups have been the subject of intense interest in recent years. In this review, we describe the recent progress in the area of azobenzene containing polymer materials that can convert light energy into mechanical energy directly. Especially we focus our attention on light-driven actuators such as artificial muscle, motor, and valve. We summarize the photomechanical effects in liquid crystal elastomer, amorphous polymer, monolayer, and supramolecules containing azobenzene, respectively.

최근 들어 광, 온도, pH, 전기, 자성, 압력 등과 같은 외부 환경의 작은 변화에도 반응하여 모양/부피가 변하거나 기계적, 광학적, 전기적, 화학적 특성 등이 가역적으로 바뀌는 스마트 소재에 대한 관심이 높아지고 있다. 이러한 스마트 소재들 중 광조사에 의해 소재의 다양한 특성을 가역적으로 제어할 수 있는 광응답 스마트 소재가 많은 관심을 받고 있다. 본 논문에서는 광에너지를 받아 기계적 에너지로 바로 전환되어 인공근육, 모터 등과 같은 액츄에이터 기능을 할 수 있는 광구동형 스마트 고분자 소재들에 대해 소개하고자 한다. 특히, 광구동형 스마트 고분자 소재 중에서도 마이크로와 매크로 스케일 변형이 가능한 아조벤젠을 함유한 비결정성 고분자, 액정 고분자, 자기 조립형 초분자에 대한 다양한 연구들에 대해 설명하고자 한다.

Keywords

References

  1. C. D. Eisenbach, "Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect", Polymer, 21, 1175 (1980). https://doi.org/10.1016/0032-3861(80)90083-X
  2. L. Matejka, M. Ilavsky, K. Dusek, and O. Wichterle, "Photomechanical effects in crosslinked photochromic polymers", Polymer, 22, 1511 (1981). https://doi.org/10.1016/0032-3861(81)90321-9
  3. J. Kupfer, and H. Finkelmann, "Nematic liquid single crystal elastomers", Makromol Chem Rapid Commun, 12, 717 (1991). https://doi.org/10.1002/marc.1991.030121211
  4. M. Ishikawa, N. Kitamura, H. Masuhara, and M. Irie, "Size effect on photoinduced volume change of polyacrylamide microgels containing triphenylmethane leuco cyanide", Makromol Chem Rapid Commun, 12, 687 (1991). https://doi.org/10.1002/marc.1991.030121206
  5. H. M. Brodowsky, U. C. Boehnke, F. Kremer, E. Gebhard, and R. Zentel, "Mechanical deformation behavior in highly anisotropic elastomers made from ferroelectric liquid crystalline polymers", Langmuir, 15, 274 (1999). https://doi.org/10.1021/la980021v
  6. H. Finkelmann and E. Nishikawa, "A new opto-mechanical effect in solids", Phys Rev Lett, 87, 015501 (2001). https://doi.org/10.1103/PhysRevLett.87.015501
  7. H. Wermter and H. Finkelmann, "Liquid crystalline elastomers as artificial muscles", e-Polymer, 013, 1 (2001).
  8. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing on cholesteric liquid crystalline elastomers", Adv. Mater., 13, 1069 (2001). https://doi.org/10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO;2-6
  9. T. Ikeda, "Photomodulation of liquid crystal orientations for photonic applications", J. Mater. Chem., 13, 2037 (2003). https://doi.org/10.1039/b306216n
  10. A. Lendlein, H. Jiang, O. Junger, and R. Langer, "Light-induced shape-memory polymers", Nature, 434, 879 (2005). https://doi.org/10.1038/nature03496
  11. M. H. Li, P. Keller, B. Li, X. Wang, and M. Brunet, "Light-driven side-on nematic elastomer actuators", Adv. Mater., 15, 569 (2003). https://doi.org/10.1002/adma.200304552
  12. P. Xie and R. Zhang, "Liquid crystal elastomers, networks and gels: advanced smart materials", J. Mater. Chem., 15, 2529 (2005). https://doi.org/10.1039/b413835j
  13. O. M. Tanchak and C. J. Barrett, "Light-induced reversible volume changes in thin films of azo polymers: the photomechanical effect", Macromolecules, 38, 10566 (2005). https://doi.org/10.1021/ma051564w
  14. T. Ikeda, M. Nakano, Y. Yu, O Tsutsumi, and A Kanazawa, "Anisotropic bending and unbending behavior of azobenzene liquid crystalline gels by light exposure", Adv. Mater., 15, 201 (2003). https://doi.org/10.1002/adma.200390045
  15. Y. Yu, M. Nakano, and T. Ikeda, "Directed bending of a polymer film by light", Nature, 425, 145 (2003). https://doi.org/10.1038/425145a
  16. Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, "Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene", Chem. Mater., 16, 1637 (2004b). https://doi.org/10.1021/cm035092g
  17. Y. Yu, T. Maeda, J. Mamiya, and T. Ikeda, "Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores", Angew Chem Int Ed Engl, 46, 881 (2007). https://doi.org/10.1002/anie.200603053
  18. M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett, and T. Ikeda, "Photomobile Polymer Materials: Towards Light-Driven Plastic Motors", Angew Chem Int Ed Engl, 47, 4986 (2008). https://doi.org/10.1002/anie.200800760
  19. M. Yamada, M. Kondo, R. Miyasato, Y. Naka, J. Mamiya, M. Kinoshita, A. Shishido, Y. Yu, C. J. Barrett, and T. Ikeda, "Photomobile polymer materials-various three-dimensional movements", J. Mater. Chem., 19, 60 (2009). https://doi.org/10.1039/b815289f
  20. K. D. Harris, R. Cuypers, P. Scheibe, C. L. van Oosten, Cees W. M. Bastiaansen, J. Lub, and D. J. Broer, " Large amplitude light-induced motion in high elastic modulus polymer actuators", J. Mater. Chem., 15, 5043 (2005). https://doi.org/10.1039/b512655j
  21. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, "Fast liquid crystal elastomer swims into the dark", Nat. Mater., 3, 307 (2004). https://doi.org/10.1038/nmat1118
  22. K. M. Lee, H. Koerner, R. A. Vaia, T. J. Bunning, and T. J. White, "Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks", Adv. Funct. Mater., 21, 2913 (2011). https://doi.org/10.1002/adfm.201100333
  23. E. Merian, "Steric factors influencing the dyeing of hydrophobic fibers", Textiles Res. J., 36, 612 (1966). https://doi.org/10.1177/004051756603600704
  24. H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Photomechanical switching behavior of azobenzene-containing semi-interpenetrating network consisting of azobenzene-carrying crosskinked poly(vinyl ether) and polycarbonate", Makromol Chem Rapid Commun, 26, 1032 (2005). https://doi.org/10.1002/marc.200500209
  25. H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "Reversible photo-mechanical switching behavior of azobenzene-contaning semi-interpenetrating network under UV and visible light irradiation", Macromol Chem Phys, 206, 2106 (2005). https://doi.org/10.1002/macp.200500241
  26. H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii, and T. Endo, "A rapod photomechanical switching polymer blend system composed of azobenzene-carrying poly(vinyl ether) and poly(carbonate)", Polymer, 46, 5879 (2005). https://doi.org/10.1016/j.polymer.2005.05.082
  27. H.K. Kim, W. S. Shin, and T. J. Ahn, "UV sensor based on photomechanically functional polymer-coated FBG", IEEE Photonics Tech. letters, 22, 1404 (2010). https://doi.org/10.1109/LPT.2010.2059375
  28. H.S. Blair and H. I. Pogue, J. E. Riordan, Polymer, 21, 1195 (1980). https://doi.org/10.1016/0032-3861(80)90087-7
  29. T. Seki and T. Tamaki, Chem. Lett., 139 (1993).
  30. A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, and H. Yamaguchi, "self-assembly through molecular recognition", Nature. Chem., 3, 34 (2011). https://doi.org/10.1038/nchem.893

Cited by

  1. Improving the Sensitivity of an Ultraviolet Optical Sensor Based on a Fiber Bragg Grating by Coating With a Photoresponsive Material vol.26, pp.2, 2015, https://doi.org/10.3807/KJOP.2015.26.2.083