• Title/Summary/Keyword: 고분자 복합소재

Search Result 201, Processing Time 0.035 seconds

Study about Electrical Insulation and earthing system of Bimodal Tram with Polymer Composite Body (고분자복합소재차체를 적용한 바이모달트램의 전기적 절연 및 접지시스템에 관한 연구)

  • Lee, Kang-Won;Mok, Jai-Kyun;Kil, Gyung-Suk;Park, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1063-1064
    • /
    • 2008
  • Bimodal tram has a carbody made of polymer composite material which is good electrical insulator. As an series hybrid type, Alternating voltage generated from generator coupled with CNG engine are rectified and transformed to variable voltage ranges which are applied to electrical apparatus and ECUs equipped inside of the tram. The failures of electrical insulation between high voltage($400V{\sim}800V$) and low voltage(24V) or between different kind of voltages such as AC and DC may cause some electrical interferences to prevent from operating rightly and other safety problem. This paper have investigated about the degradation factors of the electrical insulation and the earthing method available to bimodal tram, which is effective for preventing the electromagnetic interference coming from the inside or outside of tram but need some detecting measurements of earth leakage through electrical systems.

  • PDF

Effects of Alkali Treated Nano-kenaf Fiber in Polypropylene Composite upon Mechanical Property Changes (알카리로 처리된 나노케냐프 섬유가 PP 복합소재 내에서 기계적 물성 변화에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • The surface of nano-kenaf containing cellulose fibers was treated with alkali (NaOH) and their effects on the physical properties of the polypropylene (PP) composite were investigated. The treatment of alkali on the fibers increased the melt flow index (M.I.), elongation%, and impact strength, while it decreased the tensile strength, flexural modulus and heat deflection temperature (HDT) of the compound compared to the untreated one. It seemed the alkali treatment on the nano-kenaf fiber changed the character of the fiber due to removal of impurities and chemicals on the surface and resulted in decreased interfacial adhesion between the nano-fiber surface and the PP matrix and changed the character of the PP.

Characteristics of a Flexible Transparent Electrode based on a Silver Nanowire-polymer Composite Material with a Mesh Pattern Formed without Lithography (리소그래피 없이 제작된 그물망 구조의 은나노와이어-고분자화합물 복합소재 기반 유연 투명전극의 특성)

  • Park, Tae Gon;Park, Jong Seol;Park, Jin Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.11-17
    • /
    • 2020
  • In this study, a new method for fabricating flexible transparent electrodes based on silver nanowire-polymer (AgNW-PEDOT:PSS) composite materials having a mesh pattern formed by a solution-based process without lithography was proposed. By optimizing conditions such as the amount of ultraviolet (UV) photosensitizer injected into the suspension of AgNW and PEDOT:PSS, UV exposure time, and deionized (DI) washing time, a clear and uniform mesh pattern was obtained. For the fabricated AgNW-PEDOT:PSS-based mesh-type electrodes, characteristics such as electrical sheet resistance, light transmittance, haze, and bending flexibility were analyzed according to the mixing ratio of AgNW and PEDOT:PSS included in the suspension. The fabricated mesh electrodes typically exhibited a low electrical sheet resistance of less than 20 Ω/sq while maintaining a high transmittance of 80% or more. In addition, it was confirmed from the results of analyzing the effect of PEDOT:PSS on the characteristics of the mesh-type AgNW-PEDOT electrode that the optical visibility was greatly enhanced by reducing the surface roughness and haze, and the bending flexibility was remarkably improved.

다공성 타이타늄 지지체의 생체적합성에 관한 연구

  • Kim, Seung-Eon;Hyeon, Yong-Taek;Yun, Hui-Suk;Heo, Su-Jin;Lee, Si-U;Sin, Jeong-Uk;Kim, Yeong-Gon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.49.1-49.1
    • /
    • 2009
  • 최근 손상된 생체조직의 재생 또는 대체를 위하여 다공성의 지지체(scaffold)를 이용하는 연구가 활발히 이루어져 왔다. 지지체 재료는 조직 재생을 목적으로 하는 경우에는 생분해성 고분자, 생흡수성 세라믹스 또는 이들의 복합재료가 사용되고, 조직 대체를 목적으로 하는 경우에는 금속 또는 세라믹스 재료가 단독으로 사용된다. 현재 경조직 대체를 위한 임플란트 재료로 사용되고 있는 금속재료 중 대부분이 타이타늄 또는 타이타늄 합금이다. 타이타늄은 비강도, 내식성이 우수하며, 생체 내 환경에서 부동태피막 재생 속도가 빠르고, 섬유상 결체조직 형성 두께가 얇아 생체의료용 소재로서 각광을 받고 있다. 다공성 타이타늄은 기존 타이타늄 소재의 장점에 다공체의 구조적인 특성을 부가하여 하중을 받는 골 결손부에 사용될 경우 뼈와의 탄성계수 차이에서 기인하는 응력차폐(stress shielding) 효과를 최소화할 수 있고, 다공체 내부로 골조직 성장을 유도할 수 있어 지지체와 골조직이 일체화되는 골융합 효과의 극대화를 기대할 수 있다. 본 연구에서는 기공 구조를 다양하게 제어할 수 있고, 3차원적 연결 기공구조를 만들 수 있는 적층조형(layer manufacturing) 기술을 이용하여 3차원 다공성 타이타늄 지지체를 제조하였으며, 이에 대한 세포독성, 조골세포 증식능 등 in vitro 생체적합성을 평가하고, Rat model 을 이용한 in vivo 생체적합성을 평가하였다. 또한 지지체의 골조직 재생 유도성의 증대를 위한 생체활성처리 영향도 분석 평가하였다.

  • PDF

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.

Oil/Water Separation Technology by MXene Composite Membrane: A Review (MXene 복합막에 의한 기름/물 분리 기술: 총설)

  • Lee, Byunghee;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.304-314
    • /
    • 2021
  • Climate change results in unusual weather pattern and affects annual rain fall severely. At the same time, growing industrialization leads to higher energy demand and leakage from petrochemical industry and tanker leads to water pollution. In this scenario, finding out solution to generate clean water is highly essential. For oil/water separation, there are several methods available such as chemical precipitation and adsorption but membrane separation technique is considered to be a more cost and energy efficient process. Amphiphilicity nature of membrane are enhanced by making composite membrane with 2D material such as MXene, resulting in good electrical conductivity and hydrophilicity. This review is mainly classified into two sections: pure MXene and modified MXene. A variety of polymer is used to prepare composite membranes and MXene is modified to further enhance the properties suitable for particular applications.

Preparation and Characterization of transparent electrode based on polymer/metal oxide composite via electrospinning (전기 방사를 이용한 고분자/금속산화물 복합소재 기반의 투명전극 제조 및 특성 분석)

  • Kang, Hye Ju;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1553-1560
    • /
    • 2021
  • We have confirmed that optimized transmittance and surface resistance by electrospinning time, also the fabricated transparent electrode composed of silver nanofiber with excellent electrical, optical and mechanical performances is showed applicability to next generation flexible displays such as solar cells, displays, and touch screens. → We have confirmed the optimized transmittance and surface resistance by electrospinning time Also the fabricated transparent electrode composed of silver nanofiber with excellent electrical, optical and mechanical performances showed applicability to next generation flexible displays such as solar cells, displays, and touch screens.

Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation (열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석)

  • Byun, Sangwon;Kim, Youngshin;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

Evaluation of Permeability Performance by Cryogenic Thermal Shock in Composite Propellant Tank for Space Launch Vehicles (우주 발사체용 복합재 산화제 탱크 구조물의 극저온 열충격에 따른 투과도 성능 평가)

  • Kim, Jung-Myung;Hong, Seung-Chul;Choi, Soo-Young;Jeong, Sang-Won;Ahn, Hyon-Su
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.309-314
    • /
    • 2020
  • Polymer composites were used to reduce the weight of the spacecraft's cryogenic propellant tank. Since these materials were directional, the permeability performance of the gas permeated or delivered in the stacking direction was an indicator directly related to performance such as tank stability and onboard fuel quantity estimation. In addition, the results of permeation measurements and optical analysis of the surface to verify the effect of the number of cycles exposed to the cryogenic-room temperature environment are included. As a result, the permeability was inversely proportional to the thickness and was proportional to the number of thermal shocks, and it was verified that the permeability performance was suitable for the cryogenic propellant tank material for the space launch vehicle.

Effects of Various Diluents Included in the Resin Matrices on the Characteristics of the Dental Composites (레진 기질에 포함된 희석제들이 치과용 복합 재료의 특성 변화에 미치는 영향)

  • Yoo, Sun-Hwa;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.153-157
    • /
    • 2009
  • The resin matrix in the dental composite is generally composed of 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) as a base resin and triethylene glycol dimethacrylate (TEGDMA) as a diluent for the reduction of viscosity. The applications of dental composite were often limited in dentistry due to the relatively large amounts of volumetric shrinkage during polymerization and water uptake caused by the addition of TEGDMA to the resin matrix. In this study, in order to solve problems stemmed from the TEGDMA by reducing amount of diluent added to resin matrix, diethylene glycol dimethacrylate (DEGDMA) and ethylene glycol dimethacrylate (EGDMA) were explored as new diluents. A decrease in the volumetric shrinkage and an increase in the mechanical strength were observed by replacing TEGDMA in the dental composite to DEGDMA (or EGDMA). Reduction in the mechanical strength of the dental composite containing DEGDMA (or EGDMA), was not serious in comparison with that of the dental composite containing TEGDMA after water uptake.