DOI QR코드

DOI QR Code

Evaluation of Permeability Performance by Cryogenic Thermal Shock in Composite Propellant Tank for Space Launch Vehicles

우주 발사체용 복합재 산화제 탱크 구조물의 극저온 열충격에 따른 투과도 성능 평가

  • Received : 2020.08.31
  • Accepted : 2020.10.05
  • Published : 2020.10.31

Abstract

Polymer composites were used to reduce the weight of the spacecraft's cryogenic propellant tank. Since these materials were directional, the permeability performance of the gas permeated or delivered in the stacking direction was an indicator directly related to performance such as tank stability and onboard fuel quantity estimation. In addition, the results of permeation measurements and optical analysis of the surface to verify the effect of the number of cycles exposed to the cryogenic-room temperature environment are included. As a result, the permeability was inversely proportional to the thickness and was proportional to the number of thermal shocks, and it was verified that the permeability performance was suitable for the cryogenic propellant tank material for the space launch vehicle.

우주 발사체용 극저온 추진제 탱크 경량화를 위한 고분자복합재료의 적용은 방향성을 가지는 복합재의 특성으로 인해 기체 투과도 성능 규명이 선행되어야 한다. 이러한 특성은 탱크 안정성 및 탑재 연료량 산정과 같은 성능 및 경제성과 직결된 지표다. 본 연구에서는 구조해석을 통해 도출된 극저온 추진제 탱크의 구조에 대하여 2가지 두께에 대한 투과도를 실험적으로 평가하였으며, 나아가 극저온-상온 환경에 노출된 열충격 횟수에 따른 시편의 비가역적 특성에 대한 투과도 분석 결과를 포함한다. 연구에 사용된 복합재는 두께에 반비례하며 열충격 횟수에 비례하는 투과도 특성을 보였으며, 우주 발사체용 극저온 추진제 탱크 소재로 적절한 투과도 성능을 가지는 것을 검증하였다.

Keywords

References

  1. SPACEX FALCON HEAVY Capabilities & Services, https://www.spacex.com/about/capabilities, [Accessed 16/09/2019].
  2. Shimoda, T., Morino, Y., Ishikawa, T., Morimoto, T., and Cantoni, S., "Study of CFRP Application to Cryogenic Fuel Tank for RLV," Proceeding of the Japan International SAMPE Symposium, Vol. 7, 2001, pp. 275-278.
  3. Kang, S.K., Kim, M.G., and Kim, C.G., "Evaluation of Cryogenic Performance of Adhesives Using Composite-Aluminum Double Lap Joints," Composite Structures, Vol. 78, No. 3, 2007, pp. 440-446. https://doi.org/10.1016/j.compstruct.2005.11.005
  4. Kang, S.G., Kim, M.G., Kim, C.G., and Kong, C.W., "Effects of Curing Temperature and Autofrettage Pressure on a Type 3 Cryogenic Propellant Tank," Composites Research, Vol. 19, No. 4, 2006, pp. 31-38.
  5. Flanagan, M., Grogan, D.M., Goggins, J., Appel, S., Doyle, K., Leen, S.B., and O Bradaigh, C.M., "Permeability of Carbon Fibre PEEK Composites for Cryogenic Storage Tanks of Future Space Launchers," Composites Part A: Applied Science and Manufacturing, Vol. 101, 2017, pp. 173-184. https://doi.org/10.1016/j.compositesa.2017.06.013
  6. Choi, S.J., and Sankar, B.V., "Gas Permeability of Various Graphite/Epoxy Composite Laminates for Cryogenic Storage Systems," Composites Part B: Engineering, Vol. 39, No. 5, 2008, pp. 782-791. https://doi.org/10.1016/j.compositesb.2007.10.010
  7. Yokozeki, T., Ogasawara, T., Aoki, T., and Ishikawa, T., "Experimental Evaluation of Gas Permeability through Damaged Composite Laminates for Cryogenic Tank," Composite Science and Technology, Vol. 69, No. 9, 2009, pp. 1334-1340. https://doi.org/10.1016/j.compscitech.2008.05.019
  8. Grenoble, R.W., and Gates, T.S., "Hydrogen Permeability of Polymer Matrix Composites at Cryogenic Temperatures," Proceeding of 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Jan. 2005, AIAA, pp. 2005-2086.
  9. Jackson, J.R., Vivkers, J., and Fikes, J., "Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results," Proceeding of Composites and Advanced Materials Expo, Oct. 2015, M15-4801.
  10. Johnson, T., Sleight, D.W., and Martin, R.A., "Structures and Design Phase I Summary for the NASA Composite Cryotank Technology Demonstration Project," Proceedingsof the 54th AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference, Apr. 2013, Document ID. 20130013009.
  11. Cho, K.J., Jung, Y.S., Cho, I.H., Kim, Y.W., and Lee, D.S., "The Heat and Flow Analysis of the Liquid Helium for the Pressurization of Liquid Rocket Propellant Tank," Journal of the Korean Society of Propulsion Engineers, Vol. 7, No. 1, 2003, pp. 10-17.