• Title/Summary/Keyword: 고분자수지

Search Result 468, Processing Time 0.028 seconds

Preparation and Desalination Characteristics of Highly Durable Heterogeneous Cation-exchange Membrane Based on Polyvinylidene Fluoride (PVDF) by Casting Method for Electrodialysis (캐스팅법에 의한 전기투석용 고내구성 Polyvinylidene Fluoride (PVDF)계 양이온 불균질 이온교환막 제조 및 탈염특성)

  • Ko, Dae Young;Kim, In Sik;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • This study was carried out to prepare a heterogeneous cation exchange membrane by mixing polyvinylidene fluoride (PVDF), commercial cation exchange resin and sulfonated poly(phenylene oxide)(SPPO) in order to propose an optimum condition for the preparation, and to compare its properties with commercial membrane. Study results show that the ion exchange capacity and electrical resistance were outstanding when the ratio of polymer matrix was less than 30% comparing between PVDF-IER, PVDF-SPPO and PVDF-SPPO-IER. The tensile strength was confirmed that seemed a hard look was five times greater compared to the commercial heterogeneous membrane, despite the weak durability of PVDF resin. Therefore, when chemical and mechanical properties are considered, the optimum mixing ratio between PVDF, IER and SPPO was 30 : 70, at which electric resistance was measured as $3{\sim}5{\Omega}{\cdot}cm^2$, ion exchange capacity as 0.6~1.0 meq/g, while mechanical strength was in a range of $12{\sim}15kgf/cm^2$.

A Study on the Sludge Reduction and Biogas Production through a Two-phase Anaerobic Digestion Process (이상 혐기성 소화 공정을 통한 슬러지 발생량 저감과 바이오가스 생산에 관한 연구)

  • Woo, Mi-Hee;Han, Gee-Bong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.894-899
    • /
    • 2010
  • We coordinated the experiments with ozone pretreatment and two-phase anaerobic digestion using solid-liquid separation to raise the efficiency of sludge volume reduction and obtained the following results. The pre-treatment with ozone reduced the solid concentration in the average of TSS $8.3{\pm}2.0%$ TSS and $9.2{\pm}}2.8%$ VSS. Of the organic material, TCOD decreased $5.1{\pm}2.4%$, but SCOD showed $72{\pm}6.5%$ increased, which was due to destruction of the cell wall and dissolution of icell media by the powerful oxidative stress of ozone. During the two-phase anaerobic digestion process, we achieved the reduction of $21.5{\pm}3.4%$ TSS, $20.2{\pm}8.4%$ VSS, $32.1{\pm}7.9%$ TCOD and $22.1{\pm}7.2%$ SCOD in average. The maximum methane gas production were 177.6 mL per g TSS, 210.8 mL per g VSS, 127.0 mL per g TCOD and 1452.0 mL per g SCOD, respectively. Solid material reduction through the two-phase anaerobic digestion and MLE (Modified Ludzack-Ettinger) processes were 93.8% of TSS and 92.0% of VSS. We concluded that suggested two-phase anaerobic digestion and MLE process could achieve the reasonable production of biogas and a maximum reduction of the sludge volume.

Utilization of Pigments and Tunic Components of Ascidian as an Improved Feed Aids for Aquaculture 2. Chemical Properties of Sulfated Polysaccharides in Ascidian (Halocynthia roretzi) Tunic (우렁쉥이 껍질성분 및 색소를 이용한 양식소재 개발 2. 우렁쉥이 껍질 중 부분정제한 황산다당의 화학적 특성)

  • HONG Byeong-Il;JUNG Byung-Chun;JUNG Woo-Jin;RUCK Ji-Hee;CHOI Byeong-Dae;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.632-637
    • /
    • 2001
  • Components of polysaccharides isolated from ascidian tunic were measuerd by gel filtration, electrophoresis and chemical analyses. The sulfated polysaccharides consisted in sulfate, protein, uronic acid and amino sugars. Hexosamines were composed of arabinose, xylose, glucose, galactose, glucuronic acid, N-acetylgalactosamine and N-acetylglucosamine by gas chromatography analysis. The galactose was predominant hexose after autoclave and nutrase digestion followed by DEAE-cellulose ion exchange chromatography and gel-permeation chromatography on Sephadex G-100 and G-25. FT-IR spectra of isolated polysaccharides from ascidian tunic and standard chondroitin sulfates have similar functional groups of the type of vibration and frequency. Molecular weight of isolated polysaccharides by autoclave represented more than 40 kDa by polyacrylamide gel electrophoresis. But the neutrase treatment group divided into three band. The highest molecular band group was shown more than 100 kDa, and the two low molecular band group were shown about 22 kDa and 5 kDa, respectively, compare to standard materials.

  • PDF

Measurement of Viscosity Behavior in In-situ Anionic Polymerization of ε-caprolactam for Thermoplastic Reactive Resin Transfer Molding (반응액상성형에서 ε-카프로락탐의 음이온 중합에 따른 점도 거동 평가)

  • Lee, Jae Hyo;Kang, Seung In;Kim, Sang Woo;Yi, Jin Woo;Seong, Dong Gi
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.39-43
    • /
    • 2020
  • Recently, fabrication process of thermoplastic polyamide-based composites with recyclability as well as impact, chemical, and abrasion resistance have been widely studied. In particular, thermoplastic reactive resin transfer molding (TRTM) in which monomer with low viscosity is injected and in-situ polymerized inside mold has received a great attention, because thermoplastic melts are hard to impregnate fiber preform due to their very high viscosity. However, it is difficult to optimize the processing conditions because of high reactivity and sensitivity to external environments of the used monomer, ε-caprolactam. In this study, viscosity as an important process parameter in TRTM was measured during in-situ anionic polymerization of ε-caprolactam and the solutions for problems caused by high polymerization rate and sensitivity to moisture and oxygen were suggested. Reliability of the improved measurement technique was verified by comparing the viscosity behavior at various environmental conditions including humidity and atmosphere, and it is expected to be helpful for optimization of TRTM process.

Investigation on the Residual Stress Relaxation according to Annealing Condition for Transparent Injection Molded Part (투명한 사출성형품에서 어닐링 조건에 따른 잔류응력 이완에 관한 연구)

  • Cho, Jeong-Hyun;Park, Seo-Ri;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • Residual stress is developed in the injection molded articles during the molding process due to temperature variation and shear stress. The residual stress causes the deformation and warpage in the injection molded parts shortly within several days or after several years. Therefore, the injection molding conditions should be optimized to reduce the residual stress. And residual stress in the part should be also relaxed after molding process to maintain its shape. According to the annealing conditions, such as relative humidity, temperature and time, this study investigates the relaxation of residual stress generated in the transparent injection molded specimens. Through the experimental results, it was realized that the residual stress was relaxed at a relative humidity higher than 50%. Utilizing photoelasticity equipment, it was found that the residual stress was rapidly relaxed near glass transition temperature. Additionally, we recognized that the specimen shrunk along the flow direction but expanded to the perpendicular direction of the flow during the annealing processes, which resulted in the warpage of the specimen.

Reinforcement, Thermal and Fire Retardant Improvement of Phenolic Composites by Surface Treatment of CFRP Chip (CFRP Chip 표면처리에 따른 페놀복합재료의 강화, 내열성 및 난연성 향상)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.58-63
    • /
    • 2012
  • CFRP chip is the byproduct from carbon fiber reinforced plastic (CFRP) processing. CFRP chip is not simply a waste mainly composed of fine carbon fiber and epoxy resin. CFRP chip keeps matrix to maximize their reinforcing effect. To obtain a uniform length of carbon fiber in CFRP chip, chip was chopped ina mortar. CFRP chip should be purified to get better interface adhesion. Epoxy resin on the carbon fiber was removed by $H_2O_2$ surface etching treatment. Optimal dispersion and fabrication conditions of CFRP chip embedded in phenolic resin were determined by thermal stability for fire retardant applications. CFRP chip-phenolic composite exhibits better mechanical and thermal properties than neat phenolic resin. Surface condition of CFRP chip-phenolic composite was evaluated by static contact angle measurement. Contact angle of CFRP chip-phenolic composite was greater than neat phenolic due to heterogeneous condition of fine carbon fibers. From the evaluation for fire retardant (ASTM D635-06) test, thermal stability of CFRP chip-phenolic composite was found to be improved with higher concentration of CFRP chip.

Effect of ,Shear Stress on the Viscosity and Electrical Conductivity for the Metal-Filled Composite Materials (금속입자 충전 복합재료의 전단응력에 따른 점도 및 전기 전도도 변화)

  • Lee, Geon-Woong;Choi, Dong-uk;Lee, Sang-Soo;Kim, Jun-Kyung;Park, Min
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.644-652
    • /
    • 2002
  • This study aims at developing the conductive pastes consisting of room temperature vulcanizing (RTV) silicone and metal powder as matrix and filler, respectively. Electrical and rheological properties of metal - filled polymer composites are in general strongly affected by particle shape, side and dispersion state of the filler. In highly filled systems, particles tend to form very complex agglomerated structure which is easily changed when subjected to shear deformation. And the breakdown of agglomerated particles due to shear usually leads to the change of electrical conductivity of the composite. In this study, the effect of particle size and dispersion state of filler on the electrical conductivity of the composites are investigated to offer the selection criteria of conductive filler by measuring the rheological properties of uncured composites and the electrical conductivity of the cured composites. It was found that the type of metal filler systematically affected the rheological property, the susceptibility to shear and the degree of change of electrical conductivity of the composite. The effect of shear on the properties is more conspicuous in the composites containing large particle, indicating that both rheological and electrical properties can be improved by controlling the dispersion state at a given filler content.

Study on the Coefficient of Thermal Expansion for Composites Containing 2-Dimensional Ellipsoidal Inclusions (2차원 타원형의 충전제를 함유하는 복합재료의 열팽창 계수 연구)

  • Lee, Kee-Yoon;Kim, Kyung-Hwan;Jeoung, Sun-Kyoung;Jeon, Hyoung-Jin;Joo, Sang-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.160-167
    • /
    • 2007
  • This paper proposes a model for the solutions predicting the coefficient of thermal expansion of composites including fiber-like shaped$(a_1>a_2=a_3)$ and disk-like shaped$(a_1=a_2>a_3)$ inclusions like two dimensional geometries, which was analyzed by one axis and a single aspect ratio, $(\rho_\alpha=a_1/a_3)$. The analysis follows the procedure developed for elastic moduli by using the Lee and Paul's approach. The effects of the aspect ratio on the coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The longitudinal coefficients of thermal expansion $\alpha_{11}$ decrease and approach the coefficient of thermal expansion of filler, as the aspect ratios increase. However, the transverse coefficients of thermal expansion $\alpha_{33}$ increase or decrease with the aspect ratios.

Separation of 2,6-dimethylnaphthalene in Dimethylnaphthalene Isomers Mixture by Crystallization Operation (결정화 조작에 의한 Dimethylnaphthalene 이성체 혼합물 중의 2,6-dimethylnaphthalene의 분리)

  • Kang, Ho-Cheol;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.116-120
    • /
    • 2014
  • Light cycle oil (LCO), one of the by-products of the catalytic cracking gasoline manufacturing process, contains a lot of valuable aromatics. In particular, 2,6-dimethylnaphthalene (2,6-DMN) contained in LCO has been becoming important as the basic material of polyethylene naphthalate plastic and liquid crystal polymer, etc. If it were possible to separate and purify the valuable aromatic hydrocarbons (such as 2,6-DMN) from LCO, which have only been used as fuel mixed with heavy oil, it would be very meaningful in terms of the efficient use of resources. We investigated the high-purity purification of 2,6-DMN by the combined method of melt crystallization (MC) and solute crystallization (SC). The enriched DMN isomer mixtures (concentration of 2,6-DMN : 10.43%) recovered from LCO by distillation-extraction combination and the crystal recovered by MC used as raw materials of MC and SC, respectively. The solvent of SC used was a mixture of methanol and acetone (60 : 40 wt%). The crystal of 2,6-DMN with a high-purity of 99.5% was recovered by MC-SC combination. We confirmed that the MC-SC combination was one of the very useful combinations for the high-purity purification of 2,6-DMN contained in the enriched DMN isomer mixtures.

Effects of Thermal and Electrical Conductivity of Al(OH)3 Functionalized Graphene/Epoxy Composites by Simple Sol-Gel Method (졸-젤 법을 이용한 Al(OH)3 처리된 그래핀/에폭시 복합체의 열 및 전기전도 특성 분석)

  • Kim, Ji-Won;Im, Hyun-Gu;Han, Jung-Geun;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Functionalized graphene/epoxy composites were prepared to miprove thermal conductivities of epoxy composites and to maintain electrical insulating property. Graphene oxide (GO) was prepared using Hummers method, and then GO was reacted with aluminum isopropoxide to functionalize $Al(OH)_3$ layer onto GO surface by a simple sol-gel method (Al-GO). GO and Al-GO were characterized by X-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. The analyses confirm that GO was coated with a large and dense coverage of $Al(OH)_3$. GO and Al-GO (1 and 3 wt%) were embedded in bisphenol A (DGEBA) to investigate the effects of electrical insulating property. Electrical resistivity showed that Al-GO had better insulating property than GO. Further, the thermal conductivity of GO and Al-GO/epoxy composites was higher than that of neat epoxy resins. In particular, the thermal conductivity of Al-GO/bisphenol F (DGEBF) improved by 23.3% and Al-GO/DGEBA enhanced by 21.8% compared with pure epoxy resins.