Browse > Article

Study on the Coefficient of Thermal Expansion for Composites Containing 2-Dimensional Ellipsoidal Inclusions  

Lee, Kee-Yoon (Department of Polymer and Biomaterial Engineering, Chungnam National University)
Kim, Kyung-Hwan (Department of Polymer and Biomaterial Engineering, Chungnam National University)
Jeoung, Sun-Kyoung (Korea Automotive Technology Institute)
Jeon, Hyoung-Jin (NVH Korea Test & Research Team Research Engineer)
Joo, Sang-Il (Department of Polymer and Biomaterial Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.31, no.2, 2007 , pp. 160-167 More about this Journal
Abstract
This paper proposes a model for the solutions predicting the coefficient of thermal expansion of composites including fiber-like shaped$(a_1>a_2=a_3)$ and disk-like shaped$(a_1=a_2>a_3)$ inclusions like two dimensional geometries, which was analyzed by one axis and a single aspect ratio, $(\rho_\alpha=a_1/a_3)$. The analysis follows the procedure developed for elastic moduli by using the Lee and Paul's approach. The effects of the aspect ratio on the coefficient of thermal expansion of composites containing aligned isotropic inclusions are examined. This model should be limited to analyze the composites with unidirectionally aligned inclusions and with complete binding to each other of both matrix and inclusions having homogeneous properties. The longitudinal coefficients of thermal expansion $\alpha_{11}$ decrease and approach the coefficient of thermal expansion of filler, as the aspect ratios increase. However, the transverse coefficients of thermal expansion $\alpha_{33}$ increase or decrease with the aspect ratios.
Keywords
composite; eshelby; two-dimension; disk-like; fiber-like; aspect ratio; linear thermal; expansion;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 T. Mori and K. Tanaka, Acta Metall., 21, 571(1963)
2 T, Mura, Micromechenics of Defects in Solids, 2nd Ed., The Hague, Martinus Nijhoff, p. 74 (1987)
3 Y. Benveniste, Mech. Mater., 6, 147 (1987)
4 T. W. Chou, S. Nomura, and M. Taya, J. Compos. Mater., 14, 178 (1980)
5 G. P. Tandon and G. J. Weng, Polym. Composite, 5, 327 (1984)
6 T. S. Chow, J. Polym. Sci., Polym. Phys. Ed., 16, 967 (1978)
7 P. J. Yoon, T. D. Farnes, and D. R. Paul, Polymer, 43, 6727 (2002)
8 R. Hill, J. Mech. Pbys. Solids, 11, 357 (1963)
9 J. C. Halpin, Primer on Composite Materials Analysis, Technamic Pub. Ca. Inc., Lancaster, 1992
10 C. L. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999)
11 B. Yalcin and M. Cakmak, Polymer. 45, 6623 (2004)   DOI   ScienceOn
12 W. B. Russel, Appl. Math. Phys., 24, 581 (1973)
13 T. D. Fornes and D. R. Paul, Polymer, 44, 4993 (2003)   DOI   ScienceOn
14 J. C. Halpin, J. Compos. Mater., 3, 732 (1969)
15 K. Y. Lee and D. R. Paul, Polymer, 46, 9064 (2005)   DOI   ScienceOn
16 Z. Hashin and B. W. Rosen, J. Appl. Mech., 31, 223 (1964)
17 J. C. Halpin and N. J. Pagano, J. Compos. Mater., 3, 720 (1969)
18 T. S. Chow, J. Polym. Sci., Polym. Phys. Ed., 16, 959 (1978)
19 D. A. Brune and Bicerano, J. Polymer, 43, 369 (2002)
20 J. E. Ashton, J. C. Halpin, and P. H. Petit, Primer on composite materials: analysis, Techomic Pub., Stamford & Conn., 1969
21 T. D. Fornes and D. R. Paul, Polymer, 44, 4993 (2003)   DOI   ScienceOn
22 R. Hill, J. Mech. Phys. Solids, 12, 199 (1964)
23 J. D. Eshelby, Proc. Roy. Soc. Lond., A241, 376 (1957)
24 K. Wakashima, M. Otsuka, and S. Umekawa, J. Compos. Mater., 8, 391 (1974)
25 R. F. Gibbson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994